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Figure 1: Examples of annotations from benchmark datasets.

Image auto-annotation [3, 4] is one of the most important challenges in
computer vision. The goal of this task is to predict multiple keywords
for generic images captured in real environments (Fig. 1). Recent studies
have shown that a simple nearest neighbor-like approach is quite success-
ful. However, while this approach is successful from the viewpoint of
annotation accuracy, its computational costs, in terms of both complexity
and memory use, tend to be high due to the size of the training datasets.

In this study, we focus on a fundamental problem: given a visual fea-
ture representation, how far can we go using simple linear dimensionality
reduction methods to compress the semantic distance of images? Us-
ing the sample labels for supervision, new Euclidean distance metrics are
embedded in a small-dimensional subspace. We perform extensive com-
parisons of several methods using various datasets and visual features, to
consider under which circumstances these methods are effective. We also
show how they can be applied effectively to image annotation.
Compared dimensionality reduction methods
Suppose we have a p-dimensional image feature x, and a q-dimensional
label feature y. Our objective is to obtain a new d-dimensional small vec-
tor (d << p), whose distance metric could be the L2 distance.
(1) PCA, PCAW (whitened principal components)
(2) PLS, nPLS: Partial Least Squares finds linear transformations s =
V T

x (x− x̄) and t = V T
y (y− ȳ) that maximize the covariance between new

values s and t. We also test PLS after normalizing the variances of origi-
nal feature elements (nPLS).
(3) CCA: Canonical Correlation Analysis is intimately related to PLS.
Whereas PLS finds the projections that maximize the covariance between
the two new values, CCA finds those that maximize the correlation.
(4) CCD: Previously, we proposed the Canonical Contextual Distance
[5], which is based on the probabilistic CCA (PCCA) [1]. Using the
probabilistic structure, we can obtain a hidden latent space, in which two
canonical spaces (image side and label side) are integrated. The distance
between a query and a training sample can be computed by means of KL-
divergence in the latent space. Moreover, we can further utilize training
labels for actual distance computation (Fig. 2).
Datasets and features
We used three challenging datasets: Corel5K [3], IAPR-TC12 [4], and
NUS-WIDE [2]. For Corel5K and IAPR-TC12, we tested four visual
features: 1) SIFT bag-of-words (BoW), 2) Hue BoW, 3) GIST, and 4)
HSV color histogram. For NUS-WIDE, we tested: 1) edge histogram,
2) color correlogram, 3) grid color moment, and 4) SIFT BoW. To pro-
vide baselines, we computed various base distances for each feature (e.g.,
χ2 distance etc.). To cope with non-linearity, we also tested embedding
original metrics via kernel PCA, using a small number of training sam-
ples for kernelization. Regarding label features, we used a binary vector
indicating the presence of each word.
Experiments
To annotate query images, we simply used the k nearest neighbor method
with a linear search. For evaluation, we followed the methodology of pre-
vious works [3]. First, we computed word-specific recall and precision.

Latent Space

bear
brown
grass

Latent Space

(a) (b)

bear
brown
grass

QueryTraining sample

tx qx

tz& qz&

QueryTraining sample

qx

qz&

txty

tz&&

Figure 2: Illustration of CCD. Estimation of distance between a query and
training sample: (a) from the x-view only (CCD1); and (b) considering
both the x and y-views (CCD2).
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Figure 3: Example of annotation performance comparison.

These metrics were averaged over all the testing words to obtain Mean-
Recall (MR) and Mean-Precision (MP). Because of the trade-off of these
two scores, we evaluated the total performance using the F-measure.

Figure 3 shows a fraction of our experimental results. In many cases,
nPLS and CCD show superior performance. However, it is sometimes
difficult for simple linear methods to compete with the original domain-
specific metrics, in terms of accuracy. In such cases, KPCA embed-
ding works effectively and substantially improves performance, although
a small fraction of training samples was used for kernelization (n=300).
Another observation is that the performance of the CCA family is often
ordered CCD2 > CCD1 > CCA, which indicates the importance of con-
sidering the y-view for distance computation. While simple CCA is not
always effective and is sometimes outperformed by PCA or PCAW, we
observe that CCD2 consistently outperforms these methods.
Conclusion
We investigated and compared several linear dimensionality reduction
methods for non-parametric image annotation. Obtaining powerful small
codes in a scalable manner is a crucial issue in implementing large-scale
image annotation systems. Linear methods enable training in linear time
and are suitable for this purpose. Using the semantic information provided
by multiple labels, we can obtain a small-dimensional latent subspace re-
flecting the semantic distance of instances. Moreover, the superior perfor-
mance of 2-view CCD indicates the importance of using label information
explicitly in actual distance computation.
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