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Abstract

This paper proposes a novel framework using geometric information on parallel-
ograms for camera calibration and scene modeling. The proposed method solves the
problem linearly with factorizing a measurement matrix into the camera and plane pa-
rameters. The measurement matrix contains canonic planar homographies between cam-
era views and planes on which arbitrary parallelograms lie. Since the factorization based
approaches recover all camera poses simultaneously, the consistency of rigid transfor-
mations among cameras can be ensured. The previous parallelogram-based approaches
solving the problem linearly cannot guarantee this consistency because they are based
on the infinite homographies extracted from the individual pairs of camera images. The
proposed method is more useful than the previous factorization based approach using
parallelepipeds because parallelograms are more basic scene elements. The results of the
experiments with real outdoor images are presented to demonstrate the feasibility of the
proposed method.

1 Introduction
This paper addresses the problem of recovering camera parameters and scene model linearly
and simultaneously from the images acquired with uncalibrated cameras. This process is
known as camera self-calibration. A Euclidean reconstruction from the self-calibration is
not possible without any prior information on cameras or on the scene to be recovered.
According to the a priori information assumed to be given, there have been many approaches
concerning the self-calibration algorithm.

Self-calibration approaches using only the constraints on the internal parameters are
known as auto-calibration and have been widely investigated. These approaches provide
great flexibility because they can be applied to views of a generic scene [14], [4], [15].
However, to acquire stable estimation results, a large number of images is usually neces-
sary. Algorithms using the constraints from the camera motions have been also suggested
[13], [1], [3]. These methods are restricted to the images from the cameras having particular
motions such as pure translation or pure rotation.

There have been many methods to use the constraints from scene geometry: vanishing
points [2], vanishing points and planes [10], [6], planes [16], [11], [17], parallelepipeds [21],
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parallelograms [9],[22], [8], [7]. Due to the geometric information from the scene, these
approaches can give more stable estimation results without lengthy image sequences.

In the images captured in man-made environments, there are many primitives giving the
geometric information. Among primitives, parallelograms and parallepipeds are frequently
present in the scene, such as the architecture. The scene’s affine structure is embedded in
them and their Euclidean structure related to the shape can be used to upgrade the affine
structure to the metric one.

Wilczkowiak et al. suggested an elegant formalism using parallelepipeds of which at
least the six vertices are visible in views [21]. This method is a factorization-based approach
that computes the camera parameters and scene structure parameters linearly and simulta-
neously in one step. Due to the multiview constraints imposed on a factorization approach,
it is possible to obtain the consistency of rigid transformations among cameras. If this con-
sistency is not guaranteed, the estimation accuracy can be degraded. It has been known that
all image measurements should be used simultaneously to obtain optimal estimates as in the
factorization approach [19].

The primitive that can give full affine information is not only a parallelepiped. Parallelo-
grams are more general primitives in man-made environments. Since pairs of parallelograms
do not always form two faces of a parallelepiped, the methods using parallelograms are more
flexible in use [22], [7]. However, the previous linear approaches using parallelograms can-
not guarantee the above consistency because they are based on the information extracted
from the individual pairs of camera images and should combine the individual results when
more than two views are given.

In this paper, we suggest a factorization-based framework that utilizes parallelograms
in general position and ensures consistent results. The general position means that the par-
allelograms need not to be the part of a parallelepiped. One measurement matrix includes
all image measurement in all views and is factorized into the camera and plane parameters.
The contributions of this paper concerns the formulation of the measurement matrix from
parallelograms and the computation of the scale factors necessary for the factorization.

Many methods have been introduced to use geometric constraints of a scene and mul-
tiview constraints giving the consistent estimates. The works very similar to that proposed
in this paper were presented by Sturm [18] and Ueshiba and Tomita [20]. These methods
adopt factorization-based approach to compute camera parameters and plane parameters.
However, these methods require known metric structure of the planes. Rother et al. showed
that it is also possible to obtain projective reconstruction linearly with the points on planes
using factorization [17]. This method uses inter-image homography induced by the planes.
However, a certain plane is required as a reference and this significantly affects the accuracy.
Malis and Cipolla proposed a self calibration algorithm using images of a plane of which the
structure is unknown [11]. Although this method is not categorized as a factorization-based
approach and is a non-linear iterative approach, it imposes multiview constraints using all
inter-image homographies to increase estimation accuracy.
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Figure 1: Parameterization of a parallelogram.

2 Preliminaries

2.1 Camera Parameterization
The camera is represented using pinhole model. The projection model of a point X in 3D
world coordinate system to a point x in 2D image is expressed as follows:

x∼= K
[

R t
]

X∼= MX, (1)

where x and X are homogeneous coordinates of the points and ’∼=’ indicates equality up to
scale. The rotation matrix R and the vector t represent camera’s orientation and position.
The 3×3 matrix K is the camera calibration matrix [4].

K =

 fu s u0
0 fv v0
0 0 1

 .
The 3× 4 matrix M encapsulates the camera intrinsic and extrinsic parameters. The

image of the absolute conic (IAC) ω is simply related to the intrinsic parameters by ω =
K−T K−1.

2.2 Parallelogram Parameterization
A parallelogram is defined by 9 parameters: six extrinsic parameters describing its orienta-
tion and position and three intrinsic parameters describing its Euclidean shape: two dimen-
sion parameters (edge lengths l1 and l2) and one angle between edges (θ ). These intrinsic
parameters are illustrated in Fig. 1. The parallelogram may be represented by a 2×2 matrix
L̄:

L̄ =

[
l1 l2cosθ

0 l2sinθ

]
.

The matrix L̄ represents the parallelogram’s shape (intrinsic paramter). A vertex x̃s ≡
(±1,±1)T of the canonic square is mapped, by L̄, to a vertex of parallelogram on its sup-
porting plane.

Let xs be homogeneous coordinates of vertex of the canonic square. Using this represen-
tation, the vertex of parallelogram on the world coordinate system is represented as follows:

X ∼=
[

S̄ v
0T 1

][
L̄ 0
0T 1

][
x̃s
1

]
∼= Nxs, (2)
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Figure 2: The projection of the canonic square onto the vertices of the imaged parallelo-
grams.

where S̄ is the 3× 2 submatrix consisting of the first two columns of a rotation matrix S
representing the parallelogram’s orientation and a vector v is its position.

3 Projections of Parallelograms

3.1 Canonic Homography

Consider the projection of a parallelogram’s vertices into a camera image plane. Using
results from Section 2, the projection of the corresponding vertex in the image is:

x ∼= K
[

R t
][ S̄L̄ v

0T 1

]
xs

= MNxs

= Hxs. (3)

The matrix H will be called the canonic homography. It represents a perspective projection
that maps the vertices of the canonic square onto the vertices of the imaged parallelograms.
This is illustrated in Fig 2. Given image points for four vertices, the canonic homography
can be computed up to scale, even though we do not know prior knowledge on intrinisic or
extrinisic parameters. Our calibration algorithms are based on the link between the canonic
homography and the camera’s and parallelogram’s intrinsic and extrinsic parameters.

3.2 Measurement Matrix of Homographies

Let us now consider the case where n parallelograms are seen by m cameras. Let H̃ j
i be

the estimation result of the canonic homography associated with the projection of the jth
parallelogram in the ith camera and λ

j
i a scale factor such that the following equality can be
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written:

λ
j

i H̃ j
i = Ki

[
Ri ti

][ S̄ jL̄ j v j

0T 1

]
= MiN j

= H j
i . (4)

We may gather the estimated canonic homography for all m cameras and n parallelo-
grams into the following single matrix:

W̃ =

 H̃1
1 . . . H̃n

1
...

. . .
...

H̃1
m . . . H̃n

m

 . (5)

The matrix W̃ will be called the measurement matrix. When the scale factors are recovered,
the measurement matrix can be factorized as follows: λ 1

1 H̃1
1 . . . λ n

1 H̃n
1

...
. . .

...
λ 1

mH̃1
m . . . λ n

mH̃n
m

=

 H1
1 . . . Hn

1
...

. . .
...

H1
m . . . Hn

m

=

 M1
...

Mm

[ N1 . . . Nn
]
. (6)

However, since the canonic homographies are obtained up to scale, the measurement matrix
cannot be factorized as its current form.

4 Parameter Estimation

4.1 Rescaling Measurement Matrix
In this section, we will describe how to obtain the scale factors mentioned in Section 3.2.
Let π j be the supporting plane for the jth parallelogram. Assume that the plane π j induces
an inter-image homography A j

ik from the kth to the ith camera image. This inter-image
homography can be represented by canonic homograpies as A j

ik = H j
i (H

j
k)
−1. Let π l be

the supporting plane for another lth parallelogram and Al
ik be the homography induced by

π l . Composing Al
ik with the inverse of A j

ik yields a relative homography represented by
B jl

ik = (A j
ik)
−1Al

ik, which map a point from the kth camera image onto the same image. This
relative homography is known to be a planar homology having the form B jl

ik = I + abT ,
where a and b are arbitrary 3-vectors [23]. This means that B jl

ik has an eigenvalue 1 and the
multiplicity of that eigenvalue is two.

The relative homography can be computed up to scale from the canonic homographies,
which are also up to scale, as follows:

B̃ jl
ik = H̃ j

k(H̃
j
i )
−1H̃l

i(H̃
l
k)
−1

= (λ j
i λ

l
k)/(λ

j
k λ

l
i )B

jl
ik . (7)

From Eq. (7) and above property of the relative homography, we can see that the matrix B̃ jl
ik

has an eigen value ρ
jl

ik = (λ j
i λ l

k)/(λ
j

k λ l
i ) of multiplicity two, which can be extracted directly
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from B̃ jl
ik . Now, we can consider {ρ jl

ik } as alternative scale factors such that the factorization
is accomplished. Assume that every canonic homographies in the measurment matrix are
rescaled as ρ

jl
ik H̃ j

i = λ l
k/(λ

j
k λ l

i )H
j
i . Then, the rescaled measurement matrix can be factorized

as follows: ρ1l
1kH̃1

1 . . . ρnl
1kH̃n

1
...

. . .
...

ρ1l
mkH̃1

m . . . ρnl
mkH̃n

m

∼=
 M1/λ l

1
...

Mm/λ l
m

[ N1/λ 1
k . . . Nn/λ n

k

]
. (8)

However, since the image measurements are always affected by noise, relative homography
obtained above cannot has an eigen value of multiplicity two exactly. To obtain an optimal
eigen value, we used the method suggested in [20], in which a scalar variable ρ approximat-
ing the matrix B̃ jl

ik−ρI to rank 1 is selected as the eigen value.

4.2 Factorization
From now on, it is assumed that the measurement matrix is rescaled as above. Let H̄ be the
leading 3× 2 submatrix of the canonic homography, which can be written as H̄ = KRS̄L̄.
Then, the reduced measurement matrix W̄ containing all H̄’s can be factorized as follows:

W̄∼=

 M̄1/λ l
1

...
M̄m/λ l

m

[ N̄1/λ 1
k . . . N̄n/λ n

k

]
, (9)

where M̄i = KiRi and N̄ j = S̄ jL̄ j.
As usual in the previous factorization approaches [19], [21], the SVD (Singular Value

Decomposition) is used to obtain the low-rank factorization of W̄. Let the SVD of W̄ be
given as:

W̄ = U3m×3nD3n×3nVT
2n×3n. (10)

Assume that the diagonal matrix D contains the singular values of W̄: σ1≥σ2≥ . . .≥σ3n.
In the absence of noise, W̄ satisfying Eq. (9) has rank 3 and consequently σ4 = σ5 = . . . =
σ3n = 0. If noise is present, this is not the case. If we want to find the rank 3 matrix which is
closest to W̄ in the Frobenius norm, such a matrix can be obtained by setting all the singular
values to zero besides the three largest ones. Then, the factorization result can be given as:

W̄ = Ū3m×3diag(
√

σ1,
√

σ2,
√

σ3) ·
{V̄2n×3diag(

√
σ1,
√

σ2,
√

σ3)}T

= Û3m×3V̂T
2n×3. (11)

However, the factorization result is not unique because the following is also a valid factor-
ization:

W̄ =
(
Û3m×3T−1)(TV̂T

2n×3
)
, (12)

where T is an arbitrary non-singular 3×3 matrix. The existence of the matrix T represents
the non-translational part of a 3D affine ambiguity.

The results obtained up to now are equivalent to 3D reconstruction up to affine trans-
formation. To resolve this affine ambiguity and upgrade the results to the metric ones, we
have to impose usual self-calibration constraints and/or geometric constraints on affine re-
construction results. This issue is considered in the next section.
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4.3 Affine and Metric Reconstruction

From the results of section 4.2, we can say that M̄iT = KiRiT, i = 1 . . .m are obtained up to
scale. Consider the infinite homography H∞

1i between the first and ith camera. This infinite
homography can be computed from the above results as follows:

H∞
1i
∼= KiRiR−1

1 K−1
1

= (M̄iT)(M̄1T)−1. (13)

The infinite homogaphis computed as in Eq. (13) for any pairs of cameras are consis-
tent to each other because all M̄iT’s are obtained simultaneously from the factorization step.
Using these infinite homogaphies between the first and all the other cameras, the camera ma-
trices of an affine reconstruction can be written as P1 = [I|0] and Pi = [H∞

1i|ti] , i = 2 . . .m. To
obtain linearly the affine reconstruction of remaining 3D points and ti, we used the method
proposed in [7] with the scene point correspondences between the views and the correspond-
ing vertices of imaged parallelograms. In this process, since all camera positions are also ob-
tained simultaneously, consistency of the transformations among the cameras are retained.
After obtaining the affine reconstruction, we can upgrade the results to metric ones using
metric constraints from scene geometry and camera intrinsic parameters [7]. For example,
the orthogonality of a parallelogram’s edges and zero skew of the intrinsic parameters can
be used.

5 Experimental Results

5.1 Simulated Experiment

Before the experiment with real images, simulated experiments were performed in order to
make careful analysis of the performance of the algorithm in various parallelogram size and
singular configurations. Simulations are performed with synthetic 1024×768 images, taken
by three cameras with the following intrinsic parameters: ( fu, fv,s,u0,v0)=(1200, 1000, 0,
512, 384). Two squares were placed in front of the three cameras. The cameras were placed
in a row and the distance between close cameras were 1m. Zero-mean uniformly-distributed
noise over the interval [-0.5 pixel, 0.5 pixel] was added to the projections. The constraints
used in this experiment were: orthogonality of the edge of the squares and zero skew of the
cameras.

First, we test the performance while varying the edge size of the squares from 0.5m to
1.5m. In this experiments, the angle between the planes of the two squares were set to 120o.
Fig. 3(a) shows the results. We can see that the algorithm can acquire reasonable results for
the edge size over 0.8m.

Second, we test the performance while varying the angle between the planes of the two
squares from 50o to 170o. In this experiments, the edge size of the squares were set to 1m.
Fig. 3(b) shows the results. We can see that the singular configurations occur when the
angles are near to 50o and 170o. In case of 50o, one of the squares are too tilted to the
viewing direction of one of the cameras. In case of 170o, two squares are on an identical
plane.
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Figure 3: The results from the simulated experiments for analyzing the relation between the
performance and (a) Size of parallelograms. (b) Angle between the planes.

(a) (b) (c)

Figure 4: Three captured images for House Scene experiment. Image (a) 1, (b) 2, (c) 3

5.2 Real Image Experiment - House Scene

The resolution of the images was 853×640 and the cameras were not static. Three captured
images are shown in Fig. 4. In this example, since there are no parallelepiped of which
the six vertices can be seen across the images, the previous method [21] cannot be used.
The two parallelograms denoted in Fig. 4(b) with the white dotted lines were used as the
input for the proposed algorithm. The lines corresponding to the dotted lines were extracted
and the vertices of parallelograms were obtained from the intersections of the lines. Metric
constraints used in this experiment were: orthogonality of the edge of the building, unit
aspect ratio and zero skew of cameras. Fig. 5 shows the reconstructed model and the camera
pose in new view positions.

5.3 Real Image Experiment - Pyramid Scene

The resolution of the images was 1024×768 and the camera parameters were static while the
images were captured. Three captured images are shown in Fig. 6. The two parallelograms
denoted in Fig. 6(a) with the white dotted lines were used as the input for the algorithms.
The vertices of parallelograms were obtained using the same method in Section 5.2. Metric
constraints used in this experiment were: static intrinsic parameters, zero skew of cameras.
Fig. 7 shows the reconstructed model and the camera pose in new view positions.
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(a) (b)

Figure 5: Reconstructed model and camera pose for House Scene experiment.

(a) (b) (c)

Figure 6: Three captured images for Pyramid Scene experiment. Image (a) 1, (b) 2, (c) 3

6 Conclusion and Future works

In this paper, a novel framework was proposed for camera calibration and scene modeling
when there are parallelograms in a scene. The proposed method was based on a factorization-
based approach for obtaining the consistency of rigid transformations among cameras. It
was shown that it is possible to factorize the measurement matrix composed of canonic
planar homographies into the camera and plane parameters. It was also shown from the real
image experiments that using geometric constraints embedded in the parallelograms enables
more stable calibration results to be obtained and allows the tasks to be performed with
fewer images. However, there is future research topic which remain unresolved here. In the
formulation of this paper, it is assumed that all parallelograms are viewed in all images. One
of the usual problems for the factorization-based approach is to handle missing data. If some
parallelograms are occluded in some images, some entries of measurement matrix cannot be
obtained. We did not handle this problem in this paper but a great deal of effort in different
type of factorization-based approaches can be referred [5], [12].
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(a) (b)

Figure 7: Reconstructed model and camera pose for Pyramid Scene experiment.
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