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Figure 1: (a) Two parallelograms used as the input for the proposed algorithm.
(b) Reconstructed model and camera pose

This paper proposes a novel framework using geometric information on
parallelograms for camera calibration and scene modeling (Fig 1). In the
images captured in man-made environments, there are many primitives
giving the geometric information. Among primitives, parallelograms and
parallepipeds are frequently present in the scene, such as the architec-
ture. The scene’s affine structure is embedded in them and their Euclidean
structure related to the shape can be used to upgrade the affine structure
to the metric one.

Wilczkowiak et al. suggested an elegant formalism using parallelepipeds
of which at least the six vertices are visible in views [3]. This method is
a factorization-based approach that computes the camera parameters and
scene structure parameters linearly and simultaneously in one step. Due
to the multiview constraints imposed on a factorization approach, it is
possible to obtain the consistency of rigid transformations among cam-
eras. If this consistency is not guaranteed, the estimation accuracy can
be degraded. It has been known that all image measurements should be
used simultaneously to obtain optimal estimates as in the factorization
approach [2]. The primitive that can give full affine information is not
only a parallelepiped. Parallelograms are more general primitives in man-
made environments. Since pairs of parallelograms do not always form
two faces of a parallelepiped, the methods using parallelograms are more
flexible in use [1]. However, the previous linear approaches using paral-
lelograms cannot guarantee the above consistency because they are based
on the information extracted from the individual pairs of camera images
and should combine the individual results when more than two views are
given.

In this paper, we suggest a factorization-based framework that utilizes
parallelograms in general position and ensures consistent results. The
general position means that the parallelograms need not to be the part of
a parallelepiped. One measurement matrix includes all image measure-
ment in all views and is factorized into the camera and plane parameters.
The contributions of this paper concerns the formulation of the measure-
ment matrix from parallelograms and the computation of the scale factors
necessary for the factorization.

Let xs be homogeneous coordinates of vertex of the canonic square.
Consider the projection of a parallelogram’s vertices into a camera image
plane. The projection of the corresponding vertex in the image is:
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The 3× 3 matrix K is the camera calibration matrix. The 3× 4 matrix
M encapsulates the camera intrinsic and extrinsic parameters. S̄ is the
3×2 submatrix consisting of the first two columns of a rotation matrix S
representing the parallelogram’s orientation and a vector v is its position.
The matrix L̄ represents the parallelogram’s shape (intrinsic paramter).

The matrix H will be called the canonic homography. It represents a
perspective projection that maps the vertices of the canonic square onto

Figure 2: The projection of the canonic square onto the vertices of the
imaged parallelograms.

the vertices of the imaged parallelograms (Fig 2). Given image points
for four vertices, the canonic homography can be computed up to scale,
even though we do not know prior knowledge on intrinisic or extrinisic
parameters.

We may gather the canonic homography H̃ estimated up to scale for
all m cameras and n parallelograms into the following single matrix:

W̃ =

 H̃1
1 . . . H̃n

1
...

. . .
...

H̃1
m . . . H̃n

m

 . (1)

The matrix W̃ will be called the measurement matrix. When the scale
factors λ

j
i are recovered, the measurement matrix can be factorized: λ 1
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However, since the canonic homographies are obtained up to scale,
the measurement matrix cannot be factorized as its current form. In this
paper, it will be described how to obtain the scale factors using the rela-
tive homography known to be a planar homology having the form I+abT ,
where a and b are arbitrary 3-vectors [4]. The results obtained from the
factorization are equivalent to 3D reconstruction up to affine transforma-
tion. We can upgrade the results to metric ones using metric constraints
from scene geometry and camera intrinsic parameters [1]. For example,
the orthogonality of a parallelogram’s edges and zero skew of the intrinsic
parameters can be used.
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