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Images of deformable objects from a specific class that vary in appearance
(e.g. members of a biological group) can be described by a set of param-
eters that define their shape and texture. If we find the parameter values
that describe a particular instance, we can use these values to analyse
and interpret that example (e.g. in face analysis, texture strongly indicates
identity and shape can indicate pose or expression). Active Appearance
Models (AAMs) [1] find optimal parameter values by repeatedly improv-
ing the current estimate based on the corresponding image error (i.e. the
difference between the model texture and the image data sampled with re-
spect to the model shape). The usual way to do this is via linear regression
that predicts parameter updates, 8b, from the image residual, dg:

6b=R-5g ey

where R can be estimated from training data by inverting the linear re-
lationship [2]. Since this is typically under-constrained, more robust al-
ternatives involve regressing over PCA coefficients of the residuals [4] or
computing a Gauss-Newton approximation to the Jacobian matrix [1]; we
refer to these latter two approaches as lin_pcr and lin_jac, respectively.

The aim of this study, however, was to investigate the implications of
replacing linear regression with additive (or boosted) predictors — strong
learners expressed as a weighted sum of weak learners,

M
8b =Y Af,(ha(g)),
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where: hy,() computes a scalar feature (e.g. a Haar-like feature) of the
sampled image data, g; the weak learner, f,(), is a function (e.g. piece-
wise constant [5]) of Ay, that predicts each of the parameter updates; and
0 <A <1isa ‘shrinkage’ parameter [3] that scales each weak learner’s
contribution to the final output. Learning additive models, however, is no-
toriously slow [6] and parameters (particularly A) are tricky to determine.
Using the publicly available XM2VTS and BiolD datasets, we present:
a method for speeding up additive model training; an investigation into
how linear additive models compare with linear regression; and a hybrid
model that marries the strengths of linear and non-linear models.

Pooling Weak Learners Training (boosting) an additive model pro-
ceeds at each of the M rounds by adding the ‘best” weak learner (weighted
by A) to the ensemble and updating the predicted output (or residual). The
shrinkage parameter, A, prevents any one learner from dominating [3] and
thus promotes a diverse ensemble that is less prone to overfitting. Since
A<, however, the predicted output changes by only a small amount
at each round and successive weak learners are often highly correlated.
To retain these properties while improving efficiency, we instead propose
adding the best K > 1 learners, weighted by A /K, at each of the M rounds:

K
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For an ensemble of a given size, the number of rounds of boosting
can be reduced by a factor of K at little extra computational cost. Results
that compare combinations of M xK and A suggest that faster training
incurs a small loss in accuracy (Figure 1) that can be compensated for by
increasing K (though this means slower testing since the total number of
learners has increased). The apparent sensitivity to A is also reduced.
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Linear Additive Models When features, A, () and weak learners, f,()
are themselves linear the additive model becomes equivalent to a linear
regression. In a second experiment, we compared the three linear models
with respect to accuracy and the basis images generated. The outcomes
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Figure 1: (left) Accuracy with respect to M xK and A; (right) Basis im-
ages for three linear methods, corresponding to (I-r) scale, orientation,
x-translation and y-translation.
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Figure 2: Distribution of RMS error when trained on XM2VTS and tested
on (left) XM2VTS and (right) BioID.

showed that the linear additive model could perform as well as the other
linear models and also highlighted the relatively poor performance of the
Gauss-Newton approximation. Qualitatively, the basis images have simi-
lar characteristics such as a ‘checkerboard’ pattern for rotation (Figure 1).
One observation from this experiment is that the additive linear model
may be more efficient to apply than linear regression.

Hybrid Sequential Model The added flexibility of non-linear additive
models [5, 6] makes them less prone to local minima when far from the
true solution. They are, however, no more (and potentially less) accurate
that linear (regression or additive) models when close to the true solu-
tion; an experiment that examines point-to-point errors for both linear
and non-linear predictors, initialized with displacements of varying size,
confirms this intuition. We therefore propose a hybrid system that uses
non-linear prediction to get close to the true solution then continues using
linear additive models until convergence for accuracy; this outperforms a
‘baseline’ AAM when training and testing with the same set but improve-
ment is less pronounced for cross-dataset evaluations where we train on
XM2VTS and test on BiolD (Figure 2).

[1] T. Cootes, G. Edwards, and C. Taylor. Active appearance models.
IEEE Trans. Pattern Anal. Mach. Intell., 2001.

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance
models. In Proc. European Conf. on Computer Vision, 1998.

(2]

[3] J. H. Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29(5):1189-1232, 2001.

X.Hou, S. Z. Li, H. Zhang, and Q. Cheng. Direct appearance models.
In Proc. IEEE Conf. on Comp. Vis. and Patt. Recog., 2001.

J. Saragih and R. Goecke. A nonlinear discriminative approach to

AAM fitting. In Proc. IEEE Int’l Conf. on Comp. Vis., 2007.

S. K. Zhou and D. Comaniciu. Shape regression machine. In Proc.
Int’l Conf. on Information Processing in Medical Imaging, 2007.

(4]

(3]

(6]



