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Abstract

For automated surveillance, it is useful to detect specific actions performed by people
in busy natural environments. This differs from and thus more challenging than the inten-
sively studied action recognition problem in that for action detection in crowd an action
of interest is often overwhelmed by large number of background activities of other ob-
jects in the scene. Motivated by the success of sliding-window based 2D object detection
approaches, in this paper, we propose to tackle the problem by learning a discrimina-
tive classifier from annotated 3D action cuboids to capture the intra-class variation, and
sliding 3D search windows for detection. The key innovation of our method is a novel
greedy k nearest neighbour algorithm for automated annotation of positive training data,
by which an action detector can be learned with only a single training sequence being
annotated thus greatly alleviating the tedious and unreliable 3D manual annotation. Ex-
tensive experiments on real-world action detection datasets demonstrate that our detector
trained with minimal annotation can achieve comparable results to that learned with full
annotation, and outperforms existing methods.

1 Introduction

The use of digital video has been increasing rapidly in recent years. As the amount of video
content in use increases, methods for searching and monitoring video feeds become very
important. The ability to automatically detect actions performed by people in busy natural
environments is of particular interest for surveillance applications where cameras monitor
large areas of interest looking for specific actions like fighting or falling (see Fig. 1(b)).
Action detection in crowd is closely related to the action recognition problem which has
been studied intensively recently [1, 9, 15]. However, there are key differences between the
two problems which make action detection a much harder problem. Specifically an action
recognition method assumes that each video clip has been pre-segmented to contain a single
action with little or no background activities (see Fig. 1(a)). For real-world applications such
as detecting fighting or falling in crowd (Fig. 1(b)) we will not have segmented clips nor
can we assume the action occurs with little or no background activity. In order to recognize
actions that are dwarfed by other background activities (Fig. 1(b-d)), we need to spatially
and temporally localize as well as recognize the action. The existing action recognition
methods are thus unsuitable for solving our problem. There have been a few attempts in
the past three years on action detection [7, 8, 19, 20]. Nevertheless most of them are based
on matching templates constructed from a single sample thus unable to cope with the large
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intra-class variations caused by actions being executed by different people at different speed
and captured at different view angle. Action detection remains a largely unsolved problem.

Golf swing Riding horse Kicking Slip and Fall
(a) Recognition - YouTube Dataset [10] - Real Examples

) ?ox F'— 7-;"'

b LB
Stand up Sit down One hand wave Pick up
(¢) Detection - i-LIDs Dataset [6] (d) Detection - CMU Dataset [8]

4

Figure 1: Action recognition vs. detection. (a) Recognition - each video only contain a
single action. (b-d) Detection - action is amid other background activities.

We propose to tackle the problem by learning a discriminative classifier based on Sup-
port Vector Machine (SVM) from annotated 3D action cuboids to capture the intra-class
variation, and sliding 3D search windows for detection. Our method is motivated by the suc-
cess of sliding-window based 2D object detection approches [5] that localize and recognize
objects against background clutter and other objects in a static image. Similar to learning
a 2D object detector, to learn a discriminative action detector, a large number of 3D action
cuboids have to be annotated, which is even more tedious and unreliable compared to 2D ob-
ject annotation. To overcome this problem, we propose a novel greedy k nearest neighbour
algorithm for automated annotation of positive training data, by which an action detector can
be learned with only a single manually annotated training sequence, thus greatly reducing the
amount of manual annotation required. Our method can be seen as a solution to the multi-
instance learning (MIL) problem [2], for weakly supervised learning. However, compared
to conventional MIL methods it is much better at coping with large amounts of background
activities that are visually similar to the action of interest. Our method is validated on the
CMU dataset [8] and a new dataset created from the i-LIDS database [6] featuring unstaged
actions performed under natural settings with large number of moving people co-existing in
the scene. Our results demonstrate that the proposed action detector trained with minimal an-
notation can achieve comparable results to that learned with full annotation, and outperforms
existing methods.

1.1 Related Work

Very few existing works on action analysis are concerned with action detection in crowd.
Among them, most are focused on template matching using a single training clip [8, 19]. Ke
et al. [8] use a semi-supervised part based template for action detection. While only a single
training sample per action class is required, user interaction including manual segmentation
of body parts is needed for developing a part based shape-flow model. The method proposed
by Yang et al. [19] also requires only a single manually annotated clip for constructing an
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action template. To compensate for the lack of training data, an auxiliary annotated action
dataset that does not contain the action of interest is needed. These two template matching
methods, while requiring light manual annotation, cannot handle large intra-class variations
due to the limited training data and lack of statistical modelling of data distribution. In
contrast, our method also requires only one clip being manually annotated, but can capture
the variation in an action class via learning from a large set of training samples.

The most closely related work is Hu et al. [7] which proposes a simulated annealing
multiple instance learning support vector machine (SMILE-SVM) for learning a discrimina-
tive action classifier. Similar to our method, their method is also based on a sliding window
strategy. It limits manual annotation by only requiring the approximate head location of the
person performing the action and not the region (window) in which the action occurs. They
argue that head detection algorithms can be used to automate the annotation of the training
set. However, head detection in a crowded environments is far from being solved. Further-
more, they rely on foreground appearance features obtained by background subtraction for
action representation. Again background subtraction is not reliable in busy environments
and particularly so when it is outdoor or there are camera movements.

Another sliding-window based action detection method is presented in [20] which focus
on formulating a branch and bound method for reducing the complexity of sliding window
detection. Their method again relies on a large training set with manually annotated data. In
contrast, the focus of this paper is on effective training of an action detector with minimal
manual annotation.

2 Action Representation

Action can be represented using global features such as motion history or local features such
as interest point descriptors [13]. We use local features because they are better at handling
occlusions and appearance changes [13] thus more suitable for crowded environments. The
different categories of local features includes volumetric descriptors computed after 3D in-
terest point detection [12, 14, 16] which encode information in local spatio-temporal blocks,
trajectory descriptors [11, 15, 17] which tracks spatial (2D) interest points over time, and
flow descriptors [1, 4] which use dense optical flow information. In this paper we use the
trajectory based descriptor similar to that of Sun et al. [ 15], which has been shown to perform
well in complex action recognition datasets such as the Hollywood dataset [9].

2.1 Tracking Salient Points

Spatially salient points can be extracted at each frame and tracked over consecutive frames
to form tracks {T17 B T ,TN}. Our tracks (Fig. 2(a)) are formed by a 1-to-1 pairwise
matching of SIFT descriptor over consecutive frames. We terminate any tracks where, be-
tween consecutive frames, a point travels more than 20 pixels in the x or y axes. We also
restrict the length of acceptable tracks between L,,;;, = 5 and L4 = 30 frames.

2.2 Static Appearance Descriptor

The 2D local appearance information along the track is described using the average SIFT
descriptor. For a track T; of length k frames, we have a SIFT descriptor at each frame
{81,82,...,Sk}. The static appearance information associated with the salient points tracked
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Figure 2: Trajectory Transition Descriptor (TTD). (a) Extract tracks. (a)—(b) Quantize track
displacements into bins. (b)—(c) Sequential bin transitions along a track is transformed into
a directed graph. (c)—(d) Occurrence matrix of the directed graph.

by T; is then represented as an average SIFT descriptor computed as:
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2.3 Motion Descriptor

The motion information captured by each track is represented using a trajectory transition de-
scriptor (TTD). Specifically, we transform a trajectory vector T = [(x1,¥1, f1), (x2,¥2, f2), - - -
(xk, Yk, fi)] to a displacement vector D = [(x2 —x1,y2 —¥1), (x3 —Xx2,¥3 — ¥2), ... (X% — X¢—1,
Yk —Yi—1)], where (x;,y;) is the spatial location of the track T at frame f;. To achieve scale
invariance, the magnitude of the displacement vector is normalized by the largest displace-
ment magnitude ||D||;qx along the same trajectory.

Each of the k— 1 displacements in vector D is then quantized in magnitude and angle and
assigned to one of the 25 bins depicted in Fig. 2(b). After quantizing, the displacement vector
becomes D = [b1,b2,...,bx_1], where b; is the quantization bin number. The sequential bin
numbers in vector D are used to construct a directed graph (Fig. 2(c)) which is then modelled
as an ergodic Markov chain. The nodes of the graph corresponds to one of the 25 quantization
states and the edge weights corresponds to the number of transition between the states. To
follow the ergodic Markov chain formulation we initialize all edge weights in the directed
graph with a negligible weight of 0.15.

The occurrence matrix representation of the connected graph (Fig. 2(d)) is row normal-
ized to construct the transition matrix P of the ergodic Markov chain. The motion descriptor
of track T is then computed as the stationary distribution vector 7; of the Markov chain,
which can be obtained as the column average of matrix A, defined as:

A, (I+P+---4+P"), )

:n—|—1

when n — oo (I is the identity matrix). n is set to 50 in this work to compute an approximate
value of 7;.

2.4 Feature Channel Selection

The average SIFT S; (Eq. 1) and motion descriptor 7; is then used to construct a bag of word
(BoW) model for action representation with 1000 words for each type of descriptor. To take
advantage of the spatial distribution of the tracks, we use all six spatial grids (1 x 1, 2 x 2,
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(a) (b)
Figure 3: Action detection. (a) Action cuboid. (b) Action localized spatially and temporally.

3x3,h3x1,v3x 1, and 02 x 2) and the four temporal grids (¢1, 2, t3, and 0t2) proposed
in [9]. The combination of the spatial and temporal grids gives us 24 channels each for §; and
7, yielding a total of 48 channels. We employ the greedy channel selection routine, similar
to [9], to select at most 5 of the 48 channels because these 48 channels contain redundant
information. We start with the null set (Cp = []) and add a channel ¢ such that the cross
validation average precision (AP) of C;;1 = C;|Jc is the maximum over all available c. Then
we remove a channel ¢ from C;; if AP of Ci4q is less than Ciyq \ c. We repeatedly add
and remove channels till the size of C; reaches 5. The channel combination C; with the best
overall AP is then selected as the best channel combination. Note that unlike [9] and [15],
these channels are selected using cross validation on the training data rather than validation
on the testing data.

3 Detection

An action is contained within a 3D spatio-temporal cuboid or window illustrated in Fig. 3(a)
which we call the action cuboid. The action cuboid is represented by the multi-channel Bow
histogram of all features contained within the cuboid. Our task is to slide a cuboid spatially
and temporally over a video and locate all occurrences of the action in space and time (see
Fig. 3(b)). To determine whether a candidate action cuboid contains the action of interest, a
Support Vector Machine (SVM) classifier is learned.

More specifically, we construct a positive training set of manually annotated action
cuboids and a negative training set of videos without the actions from which random cuboids
can be selected. An SVM is then trained using the multi-channel xz kernel [9]:

K(H;,H;) —expl Z D (Hf HC] 3)
ceC

where Hf = {h{,} and Hj = {hS,} are two histograms extracted in channel c, A. is the
normalization parameter [9] and

N¢ hc _ hc )
D.(H} ,Hj) . 4
; he, +h‘ @
The SVM is trained using the hard negative mining procedure outlined in [5]. At each
iteration, an SVM is trained to select the optimal channel combination (Section 2.4). The
positive cuboids are scored using the trained SVM and the scores are normalised, via logistic
regression, to between -1 and 1. Subsequently we run the trained SVM on all the negative
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videos and add any cuboids with a normalized SVM score greater than —0.75 to the negative
training set. In addition to the hard negative mining, we perform a positive mining to relax
the reliance on the ground truth annotation. Specifically, at each iteration, we run the trained
SVM on all the positive locations within a search region created by increasing a ground truth
action cuboid by 25% in all three dimensions. The cuboid with the maximum score at each
search region is then added to the training set. With the increased positive and negative sets,
the SVM is re-trained. This iterative mining and re-training process is terminated when the
detection performance on a validation set stops improving.

During testing we slide a cuboid along the spatial and temporal axis (with overlap) and
obtain a score for each cuboid using the trained SVM. Once the score at all locations are
obtained, we iteratively find the maximum score in the video as an action cuboid. To avoid
repeated detection of the same cuboid, we set all scores within a found action cuboid to —co.
In addition, if two detected cuboids overlaps more than 25% we disregard the cuboid with the
lower score as a duplicate detection. The overlap percentage is obtained as the intersection
volume divided by the union volume.

4 Automated Annotation of Training Data

Our training set consists of a set of video clips without the action V._, Ny clips known to
contain at least one instance of the action V;l v, and one clip which has been manually an-

notated by a cuboid Qy—_ around the action. From V;~ and V," a set of spatially overlapping
instances or cuboids X; i and X; + are extracted respectlvely, where j=1...M; are the num-
ber of cuboids in video i. Our ob]ectlve is to automatically select positive cub01ds/1nstances
X;Lj: . from each video i in the positive clip set ViJr to add to the positive cuboid set Oy
which initially contains only the annotated positive cuboid Qy—;. This is effectively a multi-
instance learning (MIL) problem [2]. However, the unique nature of our problem poses
serious challenges to a conventional MIL method, that is, within each positive clip there are
much more negative instances (typically in the order of thousands) than positive ones (typi-
cally less than 5). Furthermore, these negative instances contain many background activities
that are visually similar to the action of interest, thus can be easily mis-detected as positive
instances by the conventional MIL algorithms, as will be shown in our experiments in Sec. 5.
To solve this problem, we formulated a simple yet effective solution to the MIL problem with
an assumption that a single positive instance has been annotated.

Our solution is based on a greedy k nearest neighbour (kNN) algorithm. A kNN classifier
[3] represents classes by a set of known samples (Qy for action and XI’J for non-action) and
classifies a new sample (X;”j) by checking the class of the closest known sample. kNN
classifier accuracy increases as the number of known samples increases. Therefore, we want
to iteratively grow the positive action cuboid set O such that at each iteration we capture
more of the intra-class variation and the kNN classifier becomes stronger. To that end, at
each iteration we use the current kNN classifier to select one cuboid Xif) It from the set of all
available cuboids XlJ; which is the closest to the action class represented by Q. To do this,
(i*, j*) is selected as

{i*,j }—argmln [mlnd( ,j,Qk) mlnd (Xl/,X )} 5)
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Table 1: Average Precision

CMU i-LIDS
Push I'Hand | Pickup | Jumping | 2Hand | MAP Sit Stand | MAP
Button Wave Jacks Wave Down Up
AC25_SVM 0.41 0.42 0.56 0.22 0.57 0.44 0.14 0.03 0.08
AC50_SVM 0.82 0.58 0.75 0.46 0.64 0.65 0.22 0.16 0.19
ACAuto_SVM 0.94 0.45 0.68 0.36 0.54 0.59 0.21 0.11 0.16
FV_SVM 0.09 0.11 0.46 0.26 0.48 0.28 0.04 0.03 0.04
ACMI_SVM N/A N/A N/A N/A N/A N/A 0.06 0.02 0.04
Single Training Video
[8] 0.48 0.33 0.50 0.26 0.61 0.44
[7] 0.95 0.56 0.70 0.54 0.46 0.64
[19] 0.32 0.17 0.14 0.85 0.67 0.43
KTH dataset used as training set

[20] [ AT NA [ NA T NA T 058 [ NA

where d(X,Y) is the distance function.
diXx,y)= Z D.(Hy,Hy), (6)
e={ el iR }

where D.(Hg,Hg) is defined in Eq. 4 and {c{’f7 |, ¢TI /1 are the BoW histogram for
both the average SIFT and TTD, obtained using the 1 x 1 X ¢1 grid representation. After
adding X;« j+ to Oy our KNN classifier is automatically updated. In order to reduce the risk of
including false positive cuboids into our positive training set Oy, we take a very conservative
approach, that is from each positive clip we only select one positive cuboid. Specifically, all

other cuboids Xl.jfj £ from video i* are removed from set Xf; before the next iteration.

5 Experiments

Datasets — We test our algorithm on the CMU action detection dataset [8] and a new action
detection dataset extracted from the i-LIDS database [6]. The CMU dataset contains 5 ac-
tions (Fig. 4(f)) in 46 clips totalling 14 mins of footage at 30 fps (160x 120 pixels). Half
of each action clips were used for training and the rest with other action clips for testing.
The new i-LIDS action detection dataset was constructed from the i-LIDS underground train
station videos to demonstrate action detection in a non-staged busy environment. i-LIDS
dataset has 2 actions, Stand-up and Sit-down (see Fig. 1(c)) in 40 clips totalling 10 min of
footage at 25 fps (320x240 pixels). Among the 40 clips, 11 clips (5 mins) contain busy
activities of underground passengers without sit down or stand up actions. The remaining
29 clips have 24 stand up and 26 sit down instances. Half of them were used for training
and half for testing. Of the 11 non-action clips in our i-LIDS dataset we used only 4 clips in
training and the remaining 7 were used for testing. Note that the i-LIDS dataset is much more
challenging than the CMU dataset because the actions were unstaged and more importantly
featured with much more busy background activities.

Settings — Feature channel selection (Section 2.4) and SVM regularization parameter selec-
tion were obtained using a 3-fold cross validation. Since our feature space is sparse, the
sliding window was moved at steps of 15 pixels in both spatial axes and 10 frames in the
temporal axis. For performance evaluation we plot the precision-recall curve and also com-
pute the mean average precision (MAP). The summary of our experiments can be found in
Table 1, Fig. 4, and Fig. 5.

Automated vs. Manual Annotation —We first compare our automated annotation method
described in Sec. 4 (ACAuto_SVM) to a detector using a fully annotated training set (AC50_
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Figure 4: Action detection performance on CMU dataset.

= ACAuto_SVM —AC50_SVM —AC50_SVM
——ACMI_SVM ——FV_SVM ——FV_SVM
< AC25_SVM < 04 AC25_SVM
Z Z —=-ACAuto_SVM
8 3 ——ACMI_SVM
£ 02 02 CMLS
S
0 0.2 04 0.6 08 1 0 0.2 04 0.6 08 1
Recall Recall
(a) Sit down (b) Stand up

Figure 5: Precision recall curves for i-LIDS dataset.

SVM). As seen in Table 1 for both the CMU and i-LIDS datasets, comparable results are
obtained using our automated annotation detector. This drop in performance is small consid-
ering that AC50_SVM used 10 times more manually annotated data than ACAuto_SVM. We
also note that i-LIDS dataset has a much lower overall performance because it is a much more
challenging dataset containing larger intraclass variation which makes training difficult and
a busier environment with sever occlusions and complex background activities. We illustrate
some of detection results in Fig. 6 which highlight the difficult nature of the problem.
Greedy kNN vs. Standard MIL — We test our greedy kNN solution of the MIL problem to
the popular MI-SVM formulation [2] implemented by Yang [18] using the i-LIDS dataset.
Table 1 shows that the detector trained using our greedy kNN annotation (ACAuto_SVM)
performs 4 times better than the detector using the MI-SVM annotation (ACMI_SVM). This
is because that the MI-SVM mis-detects those visually similar background actions as the
actions of interest. As is evendent when averaged over the i-LIDS dataset, the greedy kNN
annotated action cuboids has a 43% overlap with manual annotation but the MI-SVM anno-
tation only has a 11% overlap.

Automated Annotation vs. Smaller Training Set — We also train a detector (AC25_SVM)
using a smaller manually annotated training set (25% of original dataset size) and com-
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Figure 6: Detection results on i-LIDS dataset: Green - ground truth, blue - detection by
ACAuto_SVM. (a-d) True detection. (e,g) Missed detection. (f,h) False detection.

pare that to using our automated annotation of training set (ACAuto_SVM). We observe
using automated annotation has an 34% and 100% increase in MAP on CMU and i-LIDS
datasets respectively. Note that AC25_SVM uses 5 times more manually annotated data than
ACAuto_SVM yet performs poorly, showing the effectiveness of our proposed automated
annotation algorithm.

Automated vs. No Annotation —If we can perform action detection without spatial local-
ization (i.e. treating it as an action recognition rather than action detection problem), we can
reduce the amount of manual annotation needed. To test this we train an SVM (FV_SVM)
using full frame information and run our detection as a sliding window search only in the
temporal axis. As expected FV_SVM achieves a poor MAP in particular for the i-LIDS
dataset with more complex background activities (see Table 1).

Comparison to Alternative Approaches on CMU dataset— We compared our results on
the CMU dataset with those reported by the existing 4 action detection methods in Table 1. It
can be seen that our method significantly outperform the 2 template matching based method
in [8, 20]. Our result is slightly inferior to that of [7]. However, it is worth pointing out
that their method relies on head detection and background subtraction. None of them is a
problem for the CMU dataset where in most video clips there were not many moving people
in the background and the target actions occupied much of the camera view. However, for
real world surveillance scenes in the i-LIDS dataset, where the actions of interest were per-
formed in the mix of large number of passing-bys and were much smaller in scale and under
occlusion, the method in [7] will not work because neither face detection nor background
subtraction can be performed reliably.
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6 Conclusion

We have presented a novel approach for action detection in crowded environments. Our
method can been seen as an extension of the existing 2D object detection approaches to
the problem of 3D action detection. To reduce manual annotation while preserving large
training set size to cope with intra-class variation, we presented a greedy kNN algorithm
for automated annotation of positive training data using a single manually annotated clip.
Extensive experiments on real-world action detection datasets demonstrate that our detector
trained with minimal annotation can achieve comparable results to that learned with full
annotation, and outperforms existing methods.
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