Three-step image rectification
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Image stereo-rectification is the process by which two images of the
same solid scene undergo homographic transforms, so that their corre-
sponding epipolar lines coincide and become parallel to the x-axis of im-
age. A pair of stereo-rectified images is helpful for dense stereo matching
algorithms. It restricts the search domain for each match to a line paral-
lel to the x-axis. Due to the redundant degrees of freedom, the solution
to stereo-rectification is not unique and actually can lead to undesirable
distortions or be stuck in a local minimum of the distortion function.

In this paper a robust geometric stereo-rectification method by a three-
step camera rotation is proposed and mathematically explained. Unlike
other methods [1, 2, 3, 4, 5] which reduce the distortion by explicitly
minimizing an empirical measure, the intuitive geometric camera rotation
angle is minimized at each step. For un-calibrated cameras, this method
uses an efficient minimization algorithm by optimizing only one natural
parameter, the focal length. This is in contrast with all former methods
which optimize between 3 and 6 parameters.

The fundamental matrix corresponds to two stereo-rectified images if
and only if it has the special form (up to a scale factor)
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And the rectification can be achieved by applying a homography H on
the image. This homography can be written in the form: H = KRK !,
where R is the relative rotation before and after rectification, and K, K
calibration matrix before and after rectification.

Given a group of non-degenerate correspondences between two im-
ages, the fundamental matrix F can be computed and also two correspond-
ing epipoles e = (ey, ey, 1) (Fe=0), ¢’ = (¢}, €}, 1)" (¢ F = 0). Assume
cameras are weakly calibrated and only unknown is focal length f. The
idea is to transform both images so that the fundamental matrix gets the
form [i] . Unlike the other methods which directly parameterize the ho-
mographies from the constraints He =i, H'e’ = i and H'7 [i]x H = F and
find an optimal pair by minimizing a measure of distortion, we shall com-
pute the homography by explicitly rotating each camera around its optical
center. The algorithm is decomposed into three steps (Fig. 1):

1. Compute homographies H; and H by rotating both cameras re-
spectively so that the left epipole (ey, ey, D)7 is transformed to
(ex,ey,0)" and the right epipole (e}, ¢}, 1)7 to (¢}, ¢},0)7.

2. Rotate both cameras so that (ex, ey, 0)7 is transformed to (1,0,0)”
and (e;,e'y,O)T to (1,0,0)7. The corresponding homographies are
denoted by H, and H,.

3. Rotate one camera or both cameras together to compensate the
residual relative rotation between both cameras around the base-
line. The corresponding homographies are denoted by Hz and HY.

Given a focal length f, in the first two steps, the camera rotation ma-
trix is computed by minimizing the rotation angle, which reduces distor-
tion. At the third step, the residual fundamental matrix is modified such
that it is compatible with the given calibration matrix. Thus the resid-
ual rotation matrix around the baseline between two cameras can be ex-
tracted by SVD. This three-step decomposition gives a parametrization of
the modified fundamental matrix F in f. The best f is found by mini-
mizing the distances from the points to the corresponding epipolar lines:
S(f) =YV, d(x,Fx;) +d(x;, FTx}).

This three-step algorithm has the advantage of reducing the distortion
implicitly. Comparative experiments show that the algorithm has an accu-
racy comparable to the state-of-art, but finds the right minimum in cases
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Figure 1: Three-step rectification. First step: the image planes become
parallel to CC’. Second step: the images rotate in their own plane to have
their epipolar lines also parallel to CC’. Third step: a rotation of one of
the image planes around CC’ aligns corresponding epipolar lines in both
images. Note how the pairs of epipolar lines become aligned.

where other methods fail, namely when the epipolar lines are far from
horizontal(Fig. (2).

Figure 2: Image pair “Building” rectified by different methods. From top
to bottom: original images, proposed method, Hartley method [3] and
Fusiello er al. method [1]. A horizontal line is added to images to check
the rectification. The third column represents an image average of each
pair.
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