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Man-made environments are abundant with planar surfaces which have
attractive properties and are a prerequisite for a variety of vision tasks.
Examples include application for camera self-calibration, scene analysis
and 3D reconstruction. Planes are also used in robotics applications for
obstacle detection, camera localization and for object recognition.

Our overall goal is to build a cognitive robotic experimentation frame-
work. The rationale behind our system is to enable human tutor driven
learning-by-showing as well as completely automatic on-line model ac-
quisition by the robot. Schindler et al. [3] use a model selection frame-
work for multibody Structure-and-Motion estimation of image sequences.
In contrast we use model selection to detect piecewise planar surfaces nec-
essary to attach affordances such as graspable and stability. Our model is
simpler but enables the robot to interact in more realistic environments.
The idea is to embed Minimal Description Length (MDL) based model se-
lection in an iterative scheme. Thus existing planes compete with newly
created hypotheses to ensure that interest points are assigned to the best
current available hypothesis. Additionally hypothesis generation can be
guided to unexplained regions. This method avoids the bias towards dom-
inant planes typical for iterative methods, and it limits the search space
which leads to a faster explanation of the entire image in terms of piece-
wise planar surfaces.

Algorithm 1 Plane detection
P← 0, T ← 0
k← 0, ε ←M/N, S← 0
while η = (1− εM)k ≤ η0 do

T ← P
Add Z random plane hypotheses to T
Select plane hypotheses from T and store in P
Count number of explained interest points (inliers) I for P
if I > S then

S← I
ε ← S/N

end if
k← k+1

end while

Algorithm 1 shows our proposed method for plane detection. In each
iteration a small number Z of new plane hypotheses T is computed which
have to compete with the selected hypotheses P of the last iteration. The
termination criterion is based on the true inlier ratio ε and the number of
samples M which are necessary to compute the homographies. As long as
we do not know these values we use the best estimate available up to now.
For ε that is the ratio of the number of explained interest points S of the
current best plane hypotheses and the number of matched interest points
N to explain. Accordingly M is the number of plane hypotheses currently
selected multiplied with the minimal set of interest points m = 4 to com-
pute one plane homography. Furthermore in Algorithm 1 k is the number
of iterations, η stands for the probability that no correct set of hypotheses
is found and η0 is the desired failure rate. Due to the incremental scheme
it is possible to guide the computation of new hypotheses to unexplained
regions.

One of the key issues of approaches which use random samples is to
select good features. Our method addresses this fact in two ways. The
first idea is to select the first interest point A randomly and sort the other
points in increasing Euclidean distance from A. Then further three nearby
points are selected, depending on their position in the sorted list using
a Gaussian distribution. The second assumption is that in the following
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Figure 1: Examples showing detected planes in our packaging data set
and in the Oxford Visual Geometry data set.

iteration already selected homographies are good and thus the selection
of the first interest point A is biased to unexplained interest points.

In each iteration selected homographies of the last iteration have to
compete with newly sampled hypotheses. For the selection, the idea is
that the same feature cannot belong to more than one plane and that the
model cannot be fitted sequentially. Thus an over-complete set of homo-
graphies is generated and the best subset in terms of a Minimum Descrip-
tion Length criterion is chosen. The basic mathematical tool for this is
introduced in [2] and adapted in [1]. To select the best model, the savings
for each hypothesis H are expressed as

SH = Sdata−κ1Smodel −κ2Serror (1)

where in our case Sdata is the number of interest points N explained by
H and Smodel stands for the cost of coding the model itself. We use one
model (the homography of a plane) and thus Smodel = 1. Serror describes
the cost for the error added, which we express with the log-likelihood over
all interest points fi of the plane hypothesis H. Experiments have shown
that the Gaussian error model in conjunction with an approximation of the
log-likelihood comply with our expectations. Thus the cost of the error
results in

Serror =−
N

∑
i=1

log(p( fi|H))≈ N−
N

∑
i=1

p( fi|H) (2)

where log(p( fi|H)) is the log-likelihood that an interest point belongs
to the plane. For εi we use the Euclidean distance of inliers to the esti-
mated homography. An interest point can only be assigned to one model.
Hence, overlapping models compete for interest points and Equation 1
leads to interaction costs and merit terms of a plane hypotheses. Finding
the optimal possible set of homographies for the current iteration leads
to a Quadratic Boolean Problem (QBP). We embed model selection in an
iterative algorithm to keep the number of hypotheses tractable. Further-
more experiments have shown that a greedy approximation gives good
results and thus the solution can be found very fast.
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