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We formulate a general framework for depth estimation using multiple
shifted and blurred images, by elegantly coupling the blur and motion via
the common unknown of depth. Indeed, stereo [3], depth from defocus
(DFD) [2] and related methods are restrictive special cases of a frame-
work such as ours. Our framework relaxes the restrictions on motion and
internal parameter variations and offers more freedom in operating the
camera. We extend our approach for inpainting images as well as depth,
using observations with missing areas. We exploit the motion cue which
allows the correspondence / color information, missing in some images,
to be present in others. The inpainting also considers the blurring process.

The observed images gis can be modeled to be warped and blurred
manifestations of an ideally non-blurred image f as

gi(n1,n2) = ∑
l1 ,l2

hi(n1,n2,σi,θ1i(l1),θ2i(l2)) · f (θ1i(l1),θ2i(l2))+ηi(n1,n2) (1)

where θ1i(l1) and θ2i(l2) denote the warped pixel coordinate for the ref-
erence pixel (l1, l2), and the kernel hi(n1,n2,σi,θ1i(l1),θ2i(l2)) blurs a
pixel at (θ1i(l1),θ2i(l2)) in the ith image f (θ1i(l1),θ2i(l2)).

The geometric transformation between the reference and the ith view
can be expressed in terms of the depth Z as,

θ1i =
viai11l1 + viai12l2 + v1viai13 + v1vi

txi
Z

ai31l1 +ai32l2 + v1ai33 + v1
tzi
Z

(2)

θ2i =
viai21l1 + viai22l2 + v1viai23 + v1vi

tyi
Z

ai31l1 +ai32l2 + v1ai33 + v1
tzi
Z

(3)

where the lens-image plane distance in the ith view is denoted by vi, the
camera translations along the 3 axes by txi, tyi, tzi, and elements of the
camera rotation matrix by apq, 1≤ p,q≤ 3.

The blur kernel can be modeled by a 2D Gaussian function whose
variance σ , defined as the blur parameter, is related to the absolute depth
from the lens [2]. Denoting the depth of a point from the reference camera
as Z, its depth from the ith view can be expressed as Zi = ai31X +ai32Y +
ai33Z + tzi. The blur parameter σi, for the 3D point in the ith view is
related to Zi through the aperture ri, focal length f and vi as

σi = ρrivi

(
1
f
− 1

vi
− 1

Zi

)
(4)

Also, the blur kernel is centered at (θ1i(l1),θ2i(l2)) for the ith view.
Our depth estimation uses the belief propagation (BP) method [1],

which involves computing messages and beliefs on an image-sized grid,
which are, in turn, functions of data costs and the prior costs.

Expressing the reference image g1 as result of local convolutions of
the blur kernels and the ith image, the data cost at a node is defined as

Edi(n1,n2) = |g1(n1,n2)−hri(σi,n1,n2)∗gi(n1,n2)| (5)

where, hri signifies the relative blur kernel corresponding to blur parame-
ter
√

σ2
1 −σ2

i ; a function of Z. The symbol ∗ denotes convolution.
The above data cost assumes that g1 is more blurred than the gi at all

points, which need not be always true. To resolve this, we use the sign of
σ2

1 −σ2
i . If for a depth label, σ2

1 −σ2
i < 0, we modify the data cost as,

Edi(n1,n2) = |gi(θ1i,θ2i)−hri(σi,n1,n2)∗g1(n1,n2)| (6)

We incorporate the notion of visibility in the above data term using a
binary visibility function V which modulates the datacost as

Evi(n1,n2) = Vi(n1,n2) ·Edi(n1,n2) (7)

The total data cost Ed is the average of the individual data costs Evi (i > 1).
We also use the color image segmentation cue [4] to improve the

depth estimate. We compute the color segmented image and a binary

map that specifies the reliability of the depth estimate at each pixel. After
the first iteration, we compute a plane-fitted depth map using the current
depth estimate, segmented image and the reliability map. This plane-fitted
depth map regularizes the data cost in subsequent iterations as

Eds(n1,n2) = Ed(n1,n2)+w · |Z(n1,n2)−Zp(n1,n2)| (8)

where Zp denotes the plane-fitted depth map and the binary weight w is 0
if the pixel is reliable and 1 if it is not.

The prior cost constrains the neighbouring nodes to have similar la-
bels. We define the smoothness prior as a truncated absolute function

Ep(n1,n2,m1,m2) = min(|Z(n1,n2)−Z(m1,m2)|,T ) (9)

where, (n1,n2) and (m1,m2) are neighbouring nodes in a 4-connected
neighbourhood. The truncation allows discontinuities in the solution.

For estimating the inpainted depth, we note that camera motion may
allow the correspondences/color information missing in the reference im-
age g1 to be found in other images. We denote the set of missing pixels as
M. If a pixel g1(l1, l2) /∈M and gi(θ1i,θ2i) ∈M, (i > 1) then the data cost
between the g1(l1, l2) and gi(θ1i,θ2i) is not computed. If g1(l1, l2) ∈M,
we look at (θ1i,θ2i) and (θ1 j,θ2 j) for a depth label. If both gi(θ1i,θ2i) and
g j(θ1 j,θ2 j) /∈M, the matching cost between them is defined as (1 < i < j)

Evi(n1,n2) = Vi j(n1,n2) · |gi(θ1i,θ2i)−hri j(σi j,n1,n2)∗g j(n1,n2)| (10)

hri j(σi,n1,n2)∗g j(n1,n2) = ∑
l1,l2

hri j(σi,n1−θ1 j,n2−θ1 j) ·g j(θ1 j,θ2 j) (11)

Vi j(n1,n2) = Vi(n1,n2)V j(n1,n2) (12)

Here, hri j denotes the blur kernel corresponding to
√

σ2
i −σ2

j . The com-
pound visibility Vi j signifies that the matching cost is not computed if a
pixel is not observed in either the ith or the jth view. The total data cost
is the average of matching costs over image pairs with visible pixels. The
above process can yield some errors in pixel labeling. To mitigate these
we invoke the segmentation cue as earlier, albeit with some modifications
to account for the erroneous segments corresponding to missing regions.

Given the inpainted depth map, the data cost for image inpainting
compares gi(θ1i,θ2i), i > 1 with intensity labels L if gi(θ1i,θ2i) /∈M

Edi(n1,n2) = V (n1,n2) · |L−hp
ri(σi,n1,n2)∗gi(n1,n2)| (13)

The kernel superscript p denotes that, during the convolution, hp
ri carries

out a partial sum for only those pixels in its support which /∈M.
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Figure 1: Real result: (a) One out of four observations. (b) Estimated
depth map (c) Inpainted image.
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