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Abstract

The standard approach to multi-modal registration is to apply sophisticated similar-
ity metrics such as mutual information. The disadvantage of these measures, in contrast
to simple L1 or L2 norm, is the increased computational complexity and consequently
the prolongation of the registration time. An alternative approach, which has so far not
yet gained much attention in the literature, is to find image representations, so called
structural representations, that allow for the direct application of L1 and L2 norm. Re-
cently, entropy images [26] were proposed as a simple structural representation of im-
ages for multi-modal registration. In this article, we propose the application of mani-
fold learning, more precisely Laplacian eigenmaps, to learn the structural representation.
It has the theoretical advantage of presenting an optimal approximation to one of the
criteria for a structural description. Laplacian eigenmaps search for similar patches in
high-dimensional patch space and embed the manifold in a low-dimensional space under
preservation of locality. This can be interpreted as the identification of internal similar-
ities in images. In our experiments, we show that the internal similarity across images
is comparable and notice very good registration results for the new structural representa-
tion.

1 Introduction
A challenge of registration is to align images that contain significant intensity variations.
These variations can originate from a multitude of sources, such as illumination changes
in optical images, field inhomogeneities in magnetic resonance (MR) images, and, simply,
different imaging modalities. The common approach in intensity-based registration is to
integrate similarity metrics that model those intensity variations, assuming a functional or
statistical intensity relationship, instead of an identical one. Feature-based registration ap-
proaches, on the other hand, apply methods that are robust to intensity variations for keypoint
extraction and description. An example would be the calculation of histograms of image gra-
dients, as it is done for SIFT [11] and GLOH [14]. The registration of images from different
modalities is, however, affected by more substantial intensity variations, making those ap-
proaches not directly applicable.

The approach that we present in this article is a mixture of feature- and intensity-based
registration. The idea is to calculate dense descriptors that represent the structural infor-
mation of image patches. The structural information of a patch is only dependent on the
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Figure 1: Structural representation with Laplacian eigenmaps. Patches of images lie on
a manifold in high-dimensional patch space. The manifold is approximated by the neigh-
borhood graph. The low-dimensional embedding is calculated with the graph Laplacian.
Embeddings from different modalities have to be aligned to obtain the final representation.

structures in the patch, not the intensity values with which the structure is displayed. The
input images are replaced by the dense set of descriptors, on which a regular intensity-based
registration is performed. This guarantees a seamless integration into existing registration
frameworks. The advantage of the structural representation is that the standard L1 or L2
norm can be used for the registration of the structural images. These are computationally
less expensive and enable therefore a faster registration. This is even more important for
groupwise registration, where the influence becomes quadratic, as shown in [26]. More-
over, a more efficient optimization scheme, the efficient second order minimization (ESM,
[4, 25]), can be applied for multi-modal registration [26]. Finally, L1 and L2 norms are
much better suited for parallelization than complex multi-modal similarity measures, which
is important with respect to transferring the calculation to the GPU for further speed-up.

In this article, we propose the application of manifold learning for finding an optimal
structural representation of images. Laplacian eigenmaps present an optimal solution to
one of the requirements for a structural representation for image registration. This is the
preservation of locality, meaning that patches that are close in high-dimensional patch space
are mapped to a close structural representation. The requirement that the structural repre-
sentation of images is similar across modalities is guaranteed by their comparable internal
similarities. This was previously exploited in a novel framework for multi-modal registration
based on internal similarity by Penney et al. [16]. The two approaches are similar because
small image patches are compared to find local similarities inside images. The consecutive
utilization of this information is, however, entirely different. While in [16] a few internal
similarity structures are identified and then transferred to the image from the other modality,
we use all the patch information to build a neighborhood graph, approximating the manifold
embedded in high dimensions. Subsequently, the graph Laplacian is calculated to find an
optimal mapping to low-dimensional space. Since the embedding in low-dimensional space
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is arbitrary, as long as it preverves the locality, we have to align embeddings from different
modalities with an affine registration. This finally leads to the structural representation that
is used in the intensity-based registration, as schematically illustrated in figure 1.

2 Related Work
There are two groups of methods for registering multi-modal images. The first one consists
of methods that apply advanced similarity measures, such as mutual information (MI) [5, 30]
or the correlation coefficient (CR) [19]. A nice overview of mutual information based tech-
niques is provided in [18]. The second group of techniques, which is more related to our
work, consists of methods that reduce a multi-modal to a mono-modal registration. These
can again be differentiated into two classes. The first ones try to simulate one modality from
the other. Examples are X-Ray to CT (Computed Tomography) registration with the creation
of digitally reconstructed radiographs [15] and ultrasound to CT registration with the simu-
lation of ultrasound images [29]. The second group consists of methods that transfer both
images into a third, artificial modality. Examples are (i) the application of morphological
tools [13], (ii) recoloring images depending on the variances of the image regions [1], (iii)
the usage of edge- and ridge-information [12], (iv) cross-correlating gradient directions [7],
and (v) the creation of shadow-invariant optical images [17]. In our case, we are interested
in a general structural representation, so that the application specific approaches are not ap-
plicable. Further, (ii) and (iv) use cross-correlation for the comparison, indicating that the
description is not truly identical. The morphological approach [13] mainly leads to a surface
extraction, and although it has gray values instead of only binary values, much internal infor-
mation is lost. Finally, edge, ridge, and gradient estimation is problematic for points where
more than two regions are meeting, e.g. T-junctions, as discussed in [26].

Further related is the already mentioned work of Penney et al. [16], which builds upon
the internal similarity in images. Shechtman et al. [22] also consider the internal similarity
in images, however only locally, for constructing image descriptors. Another approach that
we want to refer to is the DAISY descriptor [24], which also replaces the original images
by a dense descriptor. Finally, Lee et al. [10] worked on learning similarity measures for
multi-modal registration. For the supervised learning they use max-margin structured output
learning. The approach seems related because they also consider learning, however, we are
interested in finding structural representations, instead of learning the similarity measure,
and our unsupervised learning with Laplcacian eigenmaps does not need any training. The
training is not simple because correctly aligned images from the target modalities must be
available. It is even more challenging for magnetic resonance (MR) images, which vary
significantly in their appearance for different echo and repetition times (TE/TR).

3 Structural Image Registration
Consider two images I,J : Ω→ I defined on the image grid Ω with intensity values I =
{1, . . . ,α}. The registration is formulated as

T̂ = argmax
T∈T

S(I,J(T )), (1)

with the space of transformations T and the similarity measure S. For images with structures
being depicted with the same intensity values, so I(x)= J(T̂ (x)) for x∈Ω, the L1 or L2 norm
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Patch 2Patch 1 Patch 3

Figure 2: Three different patches. Patches 1 and 2 are structurally equivalent, Patch 3 is not.

are a good choice for S. For more complex intensity relationships between the images, such
as affine, functional, or statistical ones, typical choices for S are the correlation coefficient,
correlation ratio, and mutual information, respectively. These are, however, more computa-
tionally expensive. Our goal is therefore to find structural representations that replace I and
J in the optimization of equation (1) and for which we can set S to the L1 or L2 norm.

3.1 Original Structural Representation [26]

In order to achieve a structural representation of an image, we break the problem down to the
simpler problem of finding a structural representation of an image patch. We denote patches
that are defined on the local neighborhood Nx around x as Px : Nx→ I. Our objective is to find
a function f : Px 7→Dx that assigns each patch a descriptor Dx so that the descriptor captures
the structural information of the patch. Since we calculate a descriptor for each location x,
we obtain a new image with the original intensities replaced by the descriptors.

We define two patches Px,Py to be structurally equivalent Px ∼ Py, if there exists a bijec-
tive function g : I→ I such that ∀z ∈ Nx : Px(z) = g(Py(z)). For an illustration, the first two
patches in figure 2 are structurally equivalent, in contrast to the third one. According to [26],
two properties a function f has to fulfill are

(P1) Locality preservation:

||Px−Py||< ε =⇒ || f (Px)− f (Py)||< ε
′ (2)

(P2) Structural equivalence:

Px ∼ Py ⇐⇒ f (Px) = f (Py) (3)

with reasonable ε and ε ′ depending on the chosen norm. The motivation behind the first
property is to ensure that similar patches are mapped to similar descriptors, which is impor-
tant for the robustness to noise and the capture range of the registration. The second property
states that descriptors are equivalent, if and only if, the patches are structurally equivalent.
This ensures, on the one hand, the desired structural representation, and on the other hand,
it avoids trivial solutions, such as mappings to constant values, and it improves the discrimi-
nation.
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3.2 Revised Structural Representation
The structural representation in [26] is not precisely modeling the requirements for multi-
modal registration. Subsequently, we first state two revised properties and later on explain
their advantages. To this end we consider patches Qx,Qy to be part of image I, and Rx to
be a patch of image J. Moreover, we introduce a function for each of the modalities, in the
following denoted by f and f ′.

(Q1) Locality preservation:

||Qx−Qy||< ε =⇒ || f (Qx)− f (Qy)||< ε
′ (4)

(Q2) Structural equivalence:

Qx ∼ Rx ⇐⇒ f (Qx) = f ′(Rx) (5)

(Q1) in comparison to (P1) does no longer compare patches from both modalities, but
restricts the comparison to patches within one image. This is better because the calculation
of the norm ||.|| between images from different modalities is not well defined. In fact, due to
the depiction of structures with different intensities, patches from multi-modal images may
be similar although they do not depict the same structures. This could lead to further local
optima and consequently mis-registrations.

We are as well more specific in the formulation of the structural equivalence (Q2). We
require the structural equivalence only for patches of different images. The inclusion of
patches from the same image, as it is done in (P2), is not meaningful, since no re-mapping
of intensity values is required in the same image. It could in fact lead to ambiguities. The
presented, more precise, modeling is no longer satisfiable by a global function f . We conse-
quently have to define a local function for each modality, indicated with f and f ′. In the next
section, we explain the application of manifold learning for calculating the desired structural
representation.

4 Manifold Learning
Manifold learning is an approach applied for non-linear dimensionality reduction and data
representation. The task of dimensionality reduction is to find the underlying structure in a
large set of points embedded in a high-dimensional space and to map these points to a low-
dimensional space preserving the structure. Manifold learning has recently gained much
attention to assist image processing tasks such as segmentation [31], registration [8, 20],
tracking [9, 28], recognition [2, 27], and computational anatomy [6]. Common techniques
for manifold learning are Isomap [23], local linear embedding [21], and Laplacian eigen-
maps [3]. We focus on Laplacian eigenmaps because the technique is well founded on math-
ematical concepts (Laplace Beltrami operator) and computationally efficient.

4.1 Laplacian Eigenmaps
Laplacian eigenmaps [3] build upon the construction of a neighborhood graph that approxi-
mates the manifold, on which the data points are lying on. Subsequently, the graph Laplacian
is applied to calculate a low-dimensional representation of the data that preserves locality.

Citation
Citation
{Wachinger and Navab} 2010

Citation
Citation
{Zhang, Souvenir, and Pless} 2006

Citation
Citation
{Hamm, Davatzikos, and Verma} 2009

Citation
Citation
{Rohde, Wang, Peng, and Murphy} 2008

Citation
Citation
{Lee and Elgammal} 2007

Citation
Citation
{Wachinger, Yigitsoy, and Navab} 2010{}

Citation
Citation
{Arandjelovic and Cipolla} 2007

Citation
Citation
{Wachinger, Mateus, Keil, and Navab} 2010{}

Citation
Citation
{Gerber, Tasdizen, Joshi, and Whitaker} 2009

Citation
Citation
{Tenenbaum, Silva, and Langford} 2000

Citation
Citation
{Roweis and Saul} 2000

Citation
Citation
{Belkin and Niyogi} 2003

Citation
Citation
{Belkin and Niyogi} 2003



6 WACHINGER, NAVAB: MANIFOLD LEARNING FOR REGISTRATION

Considering k points a1, . . . ,ak in RN lying on a manifold M , we want to find a set of cor-
responding points b1, . . . ,bk in the low-dimensional space Rn (n� N). We assume a twice
differentiable function m : M → Rn,ai 7→ bi. It is shown in [3] that the following holds for
the relationship between the distances on the manifold and embedding space

||m(ai)−m(a j)|| ≤ distM (ai,a j) · ||∇m(ai)||+o(distM (ai,a j)), (6)

with ai,a j ∈M . We see that ||∇m(ai)|| indicates how close nearby points are mapped.
Consequently, a map that best preserves locality on average is found with the following
minimization

argmin
||m||L2(M )

=1

∫
M
||∇m(ai)||2 dai. (7)

It is this optimization problem, for which Laplacian eigenmaps provide an optimal solution,
by calculating eigenfunctions of the Laplace Beltrami operator.

This optimally locality preserving embedding is exactly what was required for the struc-
tural representation in (Q1). We only have to identify the points ai,a j with the patches
Qx,Qy. The mapping m is therfore a suitable candidate for the function that provides the
structural representation f . For the second property (Q2), we consider manifolds M and
M ′ for two different modalities with patches Qx ∈M and Rx ∈M ′. Since the intensity,
with which objects are depicted in the images, varies with the modality, the two manifolds
are not directly comparable. Applying, however, the assumption that the internal similarity
of both modalities is equivalent, as in [16], we conclude that the structure or shape of both
manifolds is similar. Since Laplacian eigenmaps preserve locality when embedding the man-
ifold in a low-dimensional space, this structure is preserved in low dimensions. We could
then directly use the coordinates of bi as descriptor for the corresponding location Dx. This
is, however, not possible because the embedding of the structure in low-dimensional space is
arbitrary, as long as it preserves the locality. The embeddings of both manifolds M and M ′

are therefore only similar when correcting for rotation, translation, and scale. Consequently,
an affine registration of the point sets bi and b′i has to be performed. The coordinates of the
registered embeddings finally provide the structural descriptors.

We conclude that m fulfills the revised properties (Q1) and (Q2) for a structural represen-
tation. It has therefore theoretical advantages in comparison to entropy images, since they
do not fulfill the revised properties, and further, the preservation of locality is optimal for m.

4.2 Application of Laplacian Eigenmaps

In this section, we describe the application of Laplacian eigenmaps to our problem in more
details. We consider one dimension of the ambient space for each image pixel of the patches.
We use patches of size 15×15, so that N = 225. This size proofed to be a good compromise
between too small patches that do not contain enough structural information, and too large
patches that contradict with the required locality and further lead to a higher computational
burden.

We construct a graph with a node for each point Qx and with edges connecting neigh-
boring nodes. The neighborhood can be defined with an δ -neighborhood around each point,
so Qy is in the δ -neighborhood of Qx if ||Qx−Qy||2 < δ , with ||.|| the Euclidean norm. Al-
though this is geometrically motivated, a disadvantage is the selection of the parameter δ .
In our implementation, we search instead for the l = 500 nearest neighbors and add edges
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Figure 3: T1 (left), T2 (middle), and PD (right) images. First line: original images. Second
line: entropy images. Third line: Laplacian images.

between them in the adjacency graph. Further, heat kernel-based weights are assigned to the
edges with wxy = e−||Qx−Qy||2/(2·σ2) and σ2 the variance.

We select n = 1 as dimension for the low-dimensional space. The reasons for not in-
creasing this value are, first, that we obtain good results, and second, that for n > 1 we would
have to store a vector in each pixel position instead of a scalar. This increases the compu-
tational complexity and memory consumption of the registration, and moreover, makes the
visualization more challenging. Additionally, the low dimensionality facilitates the affine
alignment to a correction of scale and shift. In fact, a robust normalization accounting for
outliers and flipping, makes the point-based registration in this case even superfluous.

5 Experiments
We perform experiments on T1-, T2, and PD-weighted MR images from the BrainWeb
database1. We work with BrainWeb images containing 3% noise and 20% intensity non-
uniformity, in order to achieve realistic results. The ground truth alignment for the images
is given. In figure 3 we show the original images, the entropy images, and the images from
the Laplacian eigenmaps, in the following shortly referred to as Laplacian images. We can
clearly observe the different nature of the entropy and Laplacian images. Entropy images re-
semble gradient images, pronouncing boundaries and changes in the images. The Laplacian

1http://www.bic.mni.mcgill.ca/brainweb/
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Table 1: Registration study. Errors for translation in mm and rotation in degree.

Datasets Similarity Rotation Trans X Trans Y RMS

T1-T2

L2 4.879 9.019 6.471 7.000
MI 2.325 3.768 5.226 3.954

Entropy 2.084 4.539 5.231 4.180
Laplacian 2.584 2.061 2.1680 2.271

T1-PD

L2 2.760 6.422 5.755 5.227
MI 2.304 4.138 4.907 3.937

Entropy 2.283 4.782 4.750 4.108
Laplacian 1.750 3.007 1.929 2.297

T2-PD

L2 1.784 2.947 2.916 3.942
MI 2.161 4.628 3.812 3.680

Entropy 1.723 4.296 3.780 3.450
Laplacian 1.171 2.350 1.984 1.900

images, however, look like the original images, but with a different coloring. We can further
observe that the assumption of comparable internal similarities in the images is justified,
because the appearance of the Laplacian images across the modalities is very similar.

In order to quantify the promising visual appearance for image registration, we show
surface plots of the similarity measures for translation in figure 4. We compare the usage of
the L2-norm on the original images, MI on the original images, and L2-norm on entropy and
Laplacian images for all combinations of multi-modal alignment. The maxima indicate the
best alignment. MI shows a very sharp peak at the correct position, but seems to have a lim-
ited capture range. Entropy images also indicate the correct position, but the cost functions
contain several local maxima. We observe the cost function with the largest capture range
for the Laplacian images. In figure 5, we show similarity plots for rotation. The results are
comparable to those from the surface plots. We note the limited capture range for MI and the
local maxima for entropy images. The Laplacian images lead to a wide and smooth peak, as
desired.

Although similarity plots give a good intuition about the performance of different sim-
ilarity measures, it is only a registration study that shows the final quality. We perform a
registration study for all multi-modal image combinations. The random starting position de-
viates up to ±15 mm in translation and ±10◦ in rotation from the correct pose. We show
the average absolute error for translation and rotation, together with the overall root mean
squared error (RMS), for 100 registration runs for each configuration in table 1. We weight
1 mm equal to 1◦ to quantify translational and angular displacement from the ground truth
in one single value. We see that the positive impression of the Laplacian images from the
similarity plots is confirmed by the registration results. We obtain a significantly lower er-
ror in comparison to MI and entropy images. The performance of entropy images and MI
is comparable. Our experiments therefore confirm the theoretical advantages of Laplacian
images in comparison to entropy images in practice.
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(a) L2 Original, T1-T2
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(b) L2 Original, T1-PD
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(c) L2 Original, T2-PD
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(d) MI Original, T1-T2
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(e) MI Original, T1-PD
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(f) MI Original, T2-PD
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(g) L2 Entropy, T1-T2
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(h) L2 Entropy, T1-PD
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(i) L2 Entropy, T2-PD
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(j) L2 Laplacian, T1-T2
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(k) L2 Laplacian, T1-PD
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(l) L2 Laplacian, T2-PD

Figure 4: Plot of similarity measures with respect to translation in x and y direction. Maxima
indicate best alignment.
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6 Conclusion
In this article, we presented a more accurate formulation of the requirements on a structural
representation for multi-modal image registration. We subsequently showed that Laplacian
eigenmaps fulfill these revised requirements. In fact, the first property is fulfilled optimally,
since the embedding of Laplacian eigenmaps is designed to preserve locality. For the second
property, we assumed comparable internal similarity across imaging modalities, as it was
previously noted in the literature. Our results show that images from different modalities
have indeed comparable internal similarity, and that Laplacian eigenmaps are well suited for
providing a structural image representation. We obtained very good results for the Laplacian
images in our experiments, confirming its theoretical advantages.

Acknowledgment: This work was partly funded by the European Commission.
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