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The standard approach to multi-modal registration is to apply sophisti-
cated similarity metrics such as mutual information. The disadvantage
of these measures, in contrast to simple L1 or L2 norm, is the increased
computational complexity and consequently the prolongation of the reg-
istration time. An alternative approach, which has so far not yet gained
much attention in the literature, is to find image representations, so called
structural representations, that allow for the direct application of L1 and
L2 norm. Recently, entropy images [3] were proposed as a simple struc-
tural representation of images for multi-modal registration. In this article,
we propose the application of manifold learning, more precisely Lapla-
cian eigenmaps, to learn the structural representation, see figure 1 for an
overview of the procedure. It has the theoretical advantage to present
an optimal approximation to one of the criteria for a perfect structural
description. Laplacian eigenmaps search for similar patches in high-
dimensional patch space and embed the manifold in a low-dimensional
space under preservation of locality. This can be interpreted as the iden-
tification of internal similarities in images. In our experiments, we show
that the internal similarity across images is comparable and notice very
good registration results for the new structural representation.

1 Structural Image Registration

Consider two images I,J : Ω→ I defined on the image grid Ω with inten-
sity values I = {1, . . . ,α}. The registration is formulated as

T̂ = argmax
T∈T

S(I,J(T )), (1)

with the space of transformations T and the similarity measure S. For
images with structures being depicted with the same intensity values, so
I(x) = J(T̂ (x)) for x ∈Ω, the L1 or L2 norm are a good choice for S. For
more complex intensity relationships between the images, such as affine,
functional, or statistical ones, typical choices for S are the correlation
coefficient, correlation ratio, and mutual information, respectively. These
are, however, more computationally expensive. Our goal is therefore to
find structural representations that replace I and J in the optimization of
equation (1) and for which we can set S to the L1 or L2 norm.

2 Structural Representation

The structural representation in [3] is not precisely modeling the require-
ments for multi-modal registration. Subsequently, we first state two re-
vised properties and later on explain their advantages. To this end we
consider patches Qx,Qy to be part of image I, and Rx to be a patch of
image J. Moreover, we introduce a function for each of the modalities, in
the following denoted by f and f ′.

(Q1) Locality preservation:

||Qx−Qy||< ε =⇒ || f (Qx)− f (Qy)||< ε
′ (2)

(Q2) Structural equivalence:

Qx ∼ Rx ⇐⇒ f (Qx) = f ′(Rx) (3)

(Q1) in comparison to [3] does no longer compare patches from both
modalities, but restricts the comparison to patches within one image. This
is better because the calculation of the norm ||.|| between images from dif-
ferent modalities is not well defined. In fact, due to the depiction of struc-
tures with different intensities, patches from multi-modal images may be
similar although they do not depict the same structures. This could lead
to further local optima and consequently mis-registrations.

We are as well more specific in the formulation of the structural equiv-
alence (Q2). We require the structural equivalence only for patches of
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Figure 1: Structural representation with Laplacian eigenmaps. Patches
of images lie on a manifold in high-dimensional patch space. The man-
ifold is approximated by the neighborhood graph. The low-dimensional
embedding is calculated with the graph Laplacian. Embeddings from dif-
ferent modalities have to be aligned to obtain the final representation.

different images. The inclusion of patches from the same image, as it is
done in [3], is not meaningful, since no re-mapping of intensity values is
required in the same image. It could in fact lead to ambiguities. The pre-
sented, more precise, modeling is no longer satisfiable by a global func-
tion f . We consequently have to define a local function for each modality,
indicated with f and f ′.

3 Laplacian Eigenmaps

Laplacian eigenmaps [1] build upon the construction of a neighborhood
graph that approximates the manifold, on which the data points are ly-
ing on. Subsequently, the graph Laplacian is applied to calculate a low-
dimensional representation of the data that preserves locality.

It is exactly this preservation of locality that makes Laplacian eigen-
maps interesting for a structural representation, since it optimally fulfills
property (Q1). In the following we explain, why also (Q2) is fulfilled.
Consider manifolds M and M ′ for two different modalities with patches
Qx ∈M and Rx ∈M ′. Since the intensity, with which objects are de-
picted in the images, varies with the modality, the two manifolds are not
directly comparable. Applying, however, the assumption that the inter-
nal similarity of both modalities is equivalent, as in [2], we conclude
that the structure or shape of both manifolds is similar. Since Lapla-
cian eigenmaps preserve locality when embedding the manifold in a low-
dimensional space, this structure is preserved in low dimensions. We
could then directly use the low-dim coordinates as descriptor for the cor-
responding location Dx. This is, however, not possible because the em-
bedding of the structure in low-dimensional space is arbitrary, as long as
it preserves the locality. The embeddings of both manifolds M and M ′

are therefore only similar when correcting for rotation, translation, and
scale. Consequently, an affine registration of the point sets has to be per-
formed. The coordinates of the registered embeddings finally provide the
structural descriptors, see figure 1.
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