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Abstract

This paper presents a framework for recognising realistic human actions captured
from unconstrained environments. The novelties of this work lie in three aspects. First,
we propose a new action representation based on computing a rich set of descriptors from
key point trajectories. Second, in order to cope with drastic changes in motion character-
istics with and without camera movements, we develop an adaptive feature fusion method
to combine different local motion descriptors for improving model robustness against
feature noise and background clutters. Finally, we propose a novel Multi-Class Delta
Latent Dirichlet Allocation model for feature selection. The most informative features in
a high dimensional feature space are selected collaboratively, rather than independently
as by existing feature selection methods. Extensive experiments on challenging public
datasets demonstrate the effectiveness of the proposed framework.

1 Introduction
Recent interest in human action recognition research has been shifted from recognising ac-
tions captured by a single staged action per video clip in a well-controlled environment
[2, 16], to more realistic actions captured from an unconstrained environment in feature
films, sports broadcasting videos [15] and home videos on YouTube [10] (Fig. 1). Action
recognition in an unconstrained environment, also referred to as “in the wild” [10], is chal-
lenging due to a number of reasons. First, action videos in the wild are subject to a much
greater degree of occlusions from multiple objects, illumination change, shadow, cluttered
background, scale variation, low spatial and temporal video resolution. They pose serious
problems in feature extraction for action representation as one must compute and select the
more informative and relevant visual features for each action of interest, and igore features
caused by background clutter and other moving objects in the scene. Second, cameras can be
either static or moving in an unpredictable manner. With camera movement, motion features
are contributed by both the action and cluttered background. This can affect the usefulness
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2 BREGONZIO ET AL: TOPICS MODELLING FOR ACTION RECOGNITION

Figure 1: Actions captured in an unconstrained environments. From top to bottom, left to
right: cycling, diving, soccer juggling, and walking with a dog.

of extracted features for action representation as feature effectiveness is dependent on the
characteristics of camera movements. Finally, given an action representation with a large
pool of features, not all features are equally informative and discriminative. Feature selec-
tion is required. However, good feature selection in a high dimensional space is hard when
different features from both foreground and background are closely correlated.

In this paper, we propose a novel framework to address these three problems for recog-
nising actions in the wild. Our framework three novel features:
A rich motion descriptor for action representation. Local image features have been
widely used for action recognition. These features can be extracted from spatio-temporal
3D (2D+time) interest points [4, 6, 9, 10, 14] or key-points trajectories [5, 7, 12, 17]. 3D in-
terest points correspond to local spatio-temporal saliency of an image sequence from which
both local motion and appearance characteristics can be extracted. However, features from
3D interest points are limited in temporal scalability as they only capture short (simple)
movements within a short temporal window therefore are inadequate for describing longer-
term and more complex movements. Alternatively, long-term motion characteristics can
be extracted from trajectories through tracking key points. However, this approach is both
vulnerable to low-textured environments (not enough key points) and does not retain static
appearance information, which has a role to play in recognising actions of subtle move-
ments. In this paper, we formulate a novel trajectory representation which is able to retain
local motion information (trajectory orientation and magnitude), trajectory shape and static
appearance information. Our descriptors are invariant to changes in scale, action direction,
frame resolution and provide more robust description comparing to existing method [17].
Adaptive feature fusion. We consider both key point trajectory based descriptors and 3D
interest point based descriptors since they are complementary. However, camera movements
have very different effects on these two types of descriptors. In particular, without camera
movement, both descriptors can be extracted reliably. However, given unpredictable camera
movements, 3D interest point based descriptors become much more unreliable. To address
this problem, we formulate an adaptive fusion method for selectively combining these two
types of features.
Collaborative feature selection. To select more informative and discriminative features for
action recognition, we propose a novel Multi-Class Delta Dirichlet Allocation (MC-∆LDA)
topic model for collaborative feature selection. Traditionally, feature selection has been
performed through expensive sequential search in a large feature space [21] which mostly
ignores any correlation between different features. The proposed MC-∆LDA is designed
to retain any correlation among features and select them collaboratively. MC-∆LDA is an
extension of ∆LDA proposed by [1], which was used for understanding code bugs in com-
puter programs with binary document classes (with and without bugs). In this work, the
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(a) (b) (c)

Figure 2: (a) Orientation-Magnitude Descriptor: An action trajectory is quantized and con-
verted to a histogram. (b) All the detected trajectories. (c) Trajectories of interest and ROI.

formulated MC-∆LDA is aimed at discovering action features groups (topics), some of them
corresponding to features shared across different actions categories and others corresponding
to unique features from specific action classes. By grouping all features jointly and collabo-
ratively, MC-∆LDA provides more effective feature selection for action discrimination.

Extensive experiments were conducted to evaluate the effectiveness of the proposed
framework using realistic action datasets including the YouTube Dataset [10], the UCF
Sports dataset and Feature Films dataset [15]. Our results demonstrate that the proposed
methods significantly outperform existing techniques on the UCF Feature Films dataset
whilst achieving comparable results on both YouTube and UCF Sports datasets.

2 Action Representation
2.1 Key Point Trajectory Features
Trajectory Generation – We first compute trajectories of key-points using two techniques:
the Pyramid Lucas-Kanade-Tomasi (KLT) tracker [11, 12] and the SIFT matching [17].
These two trackers are applied independently to a video footage so that we can obtain tra-
jectories as dense as possible even in low textured videos. During tracking, we consider a
trajectory “reliable” if it lasts more than 5 frames. Any shorter trajectory is automatically re-
moved. When a trajectory reaches a pre-defined max length (25 frames), it is auto-segmented
and a new trajectory is created.

Trajectory Pruning – Extracted trajectories in a video may not always be useful for action
recognition. For example, in Fig. 2 (b), lots of trajectories are extracted from the background
area and thus need to be removed in order to retain the most relevant trajectories for describ-
ing the body actions of the person (Fig. 2 (c)). To that end, we consider a trajectory pruning
process. Our approach is based on the detection a region of interest (ROI) from each video
frame by measuring trajectory similarity within a temporal window. Suppose there exists N
trajectories that pass through a frame f : T = {ti}, i = 1, · · · ,N. For each trajectory, we define
a trajectory segment ti within a temporal window of 4 frames centred at frame f and each
framewise displacement vector di as: ti = {(xi

f−1,y
i
f−1),(x

i
f ,y

i
f ),(x

i
f +1,y

i
f +1),(x

i
f +2,y

i
f +2)},

and di = {di
1,d

i
2,d

i
3}, in which di

k =
(

xi
f +(k−1)− xi

f +(k−2),y
i
f +(k−1)− yi

f +(k−2)

)
. We aim to

measure similarity between any pair of trajectory displacement vectors di and d j. This re-
sults in an N×N dimensional similarity matrix C with component:

Ci, j =
3

∑
k=1
‖di

k−d j
k‖, (1)

from which we compute a single similarity score for trajectory ti as mi = ∑
N
j=1 Ci, j. This

score measures the similarity of this trajectory to all the other trajectories within a 4-frame
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temporal window centred at the frame f . We consider that if a trajectory is very similar to
the others, it is likely that it is extracted from background clutters thus should be removed.
To this end, in each frame f , we compute an adaptive threshold M f

T H = γ

N ∑
N
i=1 mi where γ is

empirically set to 1.3 in our experiment and remove any trajectories whose similarity score
is larger than M f

T H . After thresholding, assume N f reliable trajectories are left in the frame
f , we can now compute the centroid of the region of interest (ROI) by averaging spatial
coordinates all key points on the reliable tracks:

x̂ =
1

N f

N f

∑
i=1

xi
f , ŷ =

1
N f

N f

∑
i=1

yi
f (2)

and its dimensions are given by Dx = 2
√

2cxx and Dy = 2
√

2cyy where cxx and cyy are the
second central moments of reliable key points. Any trajectory of interest which is located
outside the ROI will then be removed. An example of remaining trajectories after pruning
is shown in Fig. 2 (c). It shows clearly that the region of interest corresponds accurately
to where the action takes place. Region of interest detection has been exploited elsewhere
[10] based on 2D interest point detection. In contrast, our approach is based on statistical
analysis of key point trajectory distributions and is robust for videos captured by both static
and moving cameras.

Orientation-Magnitude Descriptor – Given two consecutive points: P = (xl ,yl), P′ =
(xl+1,yl+1), along a trajectory as illustrated in Fig. 2(a), we compute the displacement vector
between the two points as d = (xl+1− xl ,yl+1− yl). For a single trajectory t of length L we
can then obtain a series of displacement vectors d = {d1,d2, ...,dL−1}. We perform quanti-
zation on d by considering both magnitude and orientation of the displacement vectors. For
magnitude quantization, we normalise each displacement vector by the largest displacement
magnitude within the same trajectory and apply 4 uniform quantization levels. For orienta-
tion quantization, we divide top and bottom half circles into 8 equal sectors, each subtending
22.5◦, as shown in Fig. 2(a). The formulated quantization results in a track descriptor that
is both scale-invariant and direction-invariant. Combining magnitude and orientation quan-
tizations, each trajectory is then described by a 32-bin histogram O.

Trajectory Shape Descriptor – Complex Fourier descriptors are commonly used to repre-
sent and compare shapes extracted from object silhouette for object recognition [22]. Here
we formulate a Fourier descriptor to describe the shape signature of a trajectory. Assume a
trajectory consists of L key points {(x1,y1),(x2,y2), ...,(xL−1,yL−1,)}. We aim to describe
this trajectory as a 2D shape of N vertices {z(i) : i = 1, . . . ,N}. These N vertices can be
computed using the N coefficients of the Fourier transform of {z(i)}:

zi =

N
2

∑
k=−N

2 +1

ck exp
(

2π j
ki
N

)
. (3)

The Fourier coefficients ck present the frequency contents of the trajectory in which lower
frequency components describe approximative shape while higher frequency components
retain more trajectory details. They provide an useful descriptor for trajectory global char-
acteristics. Within the N Fourier coefficients, c0 is omitted because it represents centre of
gravity of a trajectory and by removing this term, the descriptor is invariant to translation.
Moreover, we use c1 to normalise all other Fourier coefficients, making them be invariant to
homothety transformations. As a result, each trajectory is represented by an N−1 dimension
vector F . Note that our Fourier descriptor is very different from the orientation-magnitude
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descriptor in that the former is a global shape descriptor concerning global motion informa-
tion along a trajectory whilst the latter is a bag-of-words (BOW) descriptor of local motion
information of track segments. Both types of descriptors contain complimentary informa-
tion.

Appearance Descriptor – Given a trajectory with a length L, we first extract SIFT features
Si at all the L key points i = 1, ...,L. An appearance description of the tracked key point with
this trajectory is computed as the average of L SIFT features: S = 1

L ∑
L
i=1 Si.

Holistic Trajectory Representation – In order to fuse all three descriptors for action repre-
sentation, we employ the BOW method. For each trajectory, its associated descriptors O,F
and S are normalized and concatenated to form a global descriptor G = [O,F,S]. The cre-
ation of BOW representation of a video consists of two steps. First we quantise the global
descriptors G for all trajectories using K-means to obtain a codebook with 500 words and
assign each trajectory a codeword. Second, to retain spatio-temporal information about tra-
jectories, we divide the spatio-temporal volume of a ROI in a video into 8 blocks including
4 non-overlapping spatial blocks and 2 temporal overlapping blocks (with a length of 2/3
of the temporal window of the ROI volume). Trajectory in each spatio-temporal blocks are
then labelled separately. This results in a codebook V1 with 500× 8 = 4000 codewords to
describe trajectories in videos.

2.2 Spatio-Temporal Interest Points Features

We also consider local features extracted based on spatio-temporal interest points as they
contain complementary information to our trajectory features. In our model, 3D interest
points are detected using the method of [4]. Compared with alternative methods such as [6],
this approach is more reliable under realistic conditions such as small camera movement,
camera zooming, and shadows. The interest points are selected at the local maximal of
detector response, and 3D cuboids are extracted around them. Similar to [6, 10], we use
gradient vectors to describe these cuboids and PCA to reduce the descriptor’s dimensionality.
To reduce the effect of spurious detection, we employ an outlier removal method which
deletes points far from the mass centre of the points cloud. Bag-of-word is deployed again
to represent each video clip. Specifically, we initially build a codebook V2 with 300 visual
words by performing k-means to a random subset local features from the training data. Then,
we represent each clip with a visual-words histogram.

2.3 Adaptive Feature Fusion

We wish to fuse adaptively trajectory based descriptors with 3D interest point based de-
scriptors according the presence of camera movement. The presence of moving camera is
detected by computing the global optical flow over all frames in a clip. If the majority of
the frames contain global motion, we regard the clip as being recorded by a moving cam-
era. This simple method can accurately and consistently separate videos with and without
camera movements. For clips without camera movement, both interest point and trajectory
based descriptors can be computed reliably and thus both types of descriptors are used for
recognition, resulting in a final codebook V = [V 1,V 2] with 4300 visual words. In contrast,
when camera motion can be detected, interest point based descriptors are less meaningful
so only trajectory descriptors are employed, resulting the final codebook V = V 1 with 4000
visual words. We now represent a set of Nd video clips as X = {x j}, j = 1, · · · ,Nd , each of
which is represented as a set of labelled features using V .
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3 Collaborative Feature Selection
3.1 Multi-Class Delta Latent Dirichlet Allocation (MC-∆LDA)

Figure 3: MC-∆LDA model.

For MC-∆LDA modelling, we consider each video clip x j is a mixture of Nt topics Φ =
{φt}Nt

t=1 (to be discovered), each of which φt is a multi-nominal distribution over Nw words
(visual features). However, different from existing topic models such as LDA model [3]
which assumes uniform proportion of topic mixture for each video clip, a MC-∆LDA model
aims to constrain topic proportion non-uniformly and on a per-clip basis. More precisely,
for each video clip belonging to action category Ac, we model it as a mixture of: (1) Ns

t
topics which are shared by all Nc category of actions, and (2) Nt,c topics which are uniquely
associated with action category Ac. The structure of the proposed MC-∆LDA model is shown
in Fig. 3. In MC-∆LDA, the non-uniform proportion of topic mixture for a single clip x j is
enforced by its action class label c j and the hyperparameter αc for the corresponding action
class c. Given the total number of topics Nt = Ns

t + ∑
Nc
c=1 Nt,c and let T0 be the first Ns

t
elements list of shared topics and Tc be the Nt,c element list of topics for action c, each
hyperparameter αc is a vector with Nt components αc = {αc

t }
Nt
t=1 in which components t ∈

T0
⋃

Tc are constrained to be non-zero. To enforce non-uniform proportion of topic mixture,
a generative process of sampling video clips is given as follows:

1. Draw a Dirichlet word-topic distribution φt ∼ Dir(β ) for every topic t;
2. For each document j:

(a) Draw a class label c j ∼Multi(ε);
(b) Given label c j, draw a constrained topic distribution θ j ∼ Dir(αc j);
(c) Draw a topic y j,i for each word i from multinomial y j,i ∼Multi(θ j);
(d) Sample a word x j,i according to x j,i ∼Multi(φy j,i).

Given the structure of the MC-∆LDA model and observable variables (clips x j and action
labels c j), our objective is to learn the Ns

t shared topics as well as all ∑
Nc
c=1 Nt,c unique topics

for all Nc classes of actions. The full joint probability of a document j in MC-∆LDA is

p(x j,y j,θ j,Φ,c|α,β ,ε) = ∏
i

p(x j,i|y j,i,Φ)p(y j,i|θ j)p(θ j|α,c)p(c|ε)p(Φ|β ). (4)

Similar to the standard LDA, exact learning in our model is intractable. However a collapsed
Gibbs sampler can be derived to sample the topic posterior p(y|x,c,α,β ) (now additionally
conditioned on the current class c) leading to the update

p(y j,i| y j,−i,x,c,α,β ) ∝
n−i

x,y +β

∑x nx,y +β

n−i
y,d +α

c j
y

∑y n−i
y,d +α

c j
y

. (5)

Here y j,−i indicates all topics except the token i; n−i
x,y indicates the counts of topic y being

assigned to word x, excluding the current item i; and n−i
y,d indicates the count of topic y
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occurring in the current document d. These counts are also used to point estimate Dirichlet
parameters θ and Φ by their mean, e.g.

Φ̂x,y =
nx,y +β

∑x nx,y +β
. (6)

In our model, we set the number of shared topics to Ns
t = 5 and assigned each action category

a single unique topic Nt,c = 1. Moreover, we set the non-zero elements of αc for shared topics
to 0.1 and for unique topics to 10. The hyperparameter β is learned with Gibbs-expectation
maximization [13].

3.2 Feature Selection using MC-∆LDA
Using MC-∆LDA enables us to learn Nt topics Φ̂ to represent natural grouping of visual
features either shared by all classes of actions or uniquely associated with one particular
action category.This grouping process effectively ranks all the visual features according to
their importance of being used for representing either general aspects of all action classes
or unique aspects of a specific action class. Now, we need to learn a sorted index of all the
visual features r(V ) from the learned topics to represent distinctive visual features for action
classification. Ideally, the ranked features r(V ) can be learned from the ∑

Nc
c=1 Nt,c action

specific topics in Φ̂. However, as visual features extracted from action videos can be very
noisy and not well structured, those topics can be easily corrupted by noise and are thus
not suited for feature selection. Therefore we learn the discriminative features from the Ns

t
topics shared by all actions. Given the Ns

t shared topics which are represented as an Nw×Ns
t

dimension matrix Φ̂s, the feature selection can be summarised into two steps:
1. For each feature vk, k = 1, · · · ,Nw, compute its maximum probability across all Ns

t
topics according to p(vk) = max(Φ̂s

k,1:Ns
t
);

2. Rank the value of p(vk),k = 1, · · · ,Nw in ascending order to obtain a vector of feature
index r(V) in which higher ranked features correspond to more discriminative/relevant
features.

As our model select different types of features to represent videos with and without camera
movements, different MC-∆LDA models are trained separately for the two type of videos.
For each model, the number of features selected for final classification are determined by
cross validation.

4 Experiments
Datasets – Three action datasets were used in our experiments. UCF Feature Films Dataset
[15] provides a representative pool of natural samples of two action classes including Kissing
and Hitting/slapping. It contains 92 samples of Kissing and 112 samples of Hitting/Slapping,
extracted from a range of classic movies. The actions were captured in a wide range of scenes
under different viewpoints with different camera movement patterns. The video clips have
different frame rate and different image size, lasting between 5 to 15 seconds. UCF Sport
Actions Dataset [15] contains 10 different types of human actions in sport broadcasting
videos: diving, kicking , weight-lifting, horse-riding, running, skateboarding, golf swing-
ing, swinging 1 (gymnastics, on the pommel horse and floor), swinging 2 (gymnastics, on
the high and uneven bars) and walking. The dataset consists of 150 video samples which
show a large intra-class variability. The videos have different frame rate and image size.
They last in average 5 seconds. YouTube Dataset [10] is the most extensive realistic action
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Figure 4: From top to bottom: Example frames from the UCF Feature Films, the UCF Sport
Actions and the YouTube datasets.

(a) UCF Sports (b) UCF Films (c) YouTube

Figure 5: Confusion matrices of our approach on three datasets.

dataset available to public. it is composed of 1168 videos collected from YouTube. These
videos contain a representative collection of real world challenges such as: shaky cameras,
cluttered background, variation in object scale, variable and changing view-point and illumi-
nation, and low resolution. Particularly, since these videos are mostly home-videos captured
by hand-held cameras, the camera movements are much more unpredictable compared the
other two datasets. The YouTube dataset contains 11 action categories: basketball shooting,
volleyball spiking, trampoline jumping, soccer juggling , horse-back riding, cycling, diving,
swinging, golf swinging, tennis swinging, and walking. Clips have different frame rate by
constant frame size of 320 by 240 pixels. The clips last in between 3 and 15 seconds. Exam-
ples of the three datasets are shown in Fig. 4.

Settings – Recognition was performed using Support Vector Machine with a Gaussian ker-
nel. We used Leave-One-Out Cross-Validation (LOOCV). More specifically, for the YouTube
dataset, adopting the settings given in [10], the dataset was divided into 25 subsets, out of
which 24 subsets were used for training and the remaining subset was used for testing. For
the UCF Sport Actions and Feature Films datasets we follow the setting in [15]: one clip
was used for testing and the renaming for training. In our experiment, we empirically used
29 Fourier coefficients in the trajectory shape descriptor, and for the appearance descriptor,
we used 128-bin SIFT histogram.
Comparison with state-of-the-art techniques – The average recognition rates obtained us-
ing the proposed approach are presented in Table 1 and compared with the results obtained
by existing approaches. The classification confusion matrices are also presented in Fig. 5.
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BREGONZIO ET AL: TOPICS MODELLING FOR ACTION RECOGNITION 9

UCF Films UCF Sports YouTube
Our model 96.75% 86.90% 64.00%
Wang et al. [18] 86.60% 85.60% -
Yeffet et al. [20] 80.75% 79.20% -
Rodriguez et al. [15] 66.30% 69.20% -
Kovashka et al. [8] - 87.20% -
Yao et al. [19] - 86.60% -
Liu et al. [10] - - 71.20%

Table 1: Comparison on the UCF Feature Films, UCF sport actions and YouTube datasets.

UCF Films UCF Sport YouTube
OM 80.50% 58.04% 44.7%
F 82.00% 75.02% 45.7%
S 91.60% 82.50% 44.5%
OM+F+S 94.40% 84.45% 59.90%
OM+F+S+IP without adaptive fusion 92.20% 77.33% 49.03%
OM+F+S+IP with adaptive fusion 96.75% 86.90% 64.00%

Table 2: Evaluation of descriptor performances and effectiveness of feature fusion. OM:
Orientation-Magnitude Descriptor, F: Fourier Descriptor, S: SIFT Descriptor, and IP: spatio-
temporal interest points.

Excellent result is obtained on the UCF Feature Film dataset with 96.75% average recog-
nition rate for the two action classes. This result is significantly better than those obtained
by existing approaches, best of which [18] achieved 86.60%. Our approach also outper-
forms all existing methods which report results on the UCF Sport dataset except [8]. As for
the YouTube Dataset, an average recognition rate of 64.00% was obtained. This is a much
harder dataset compared to the other two due to its home video nature. Apart from the work
[10] which first introduced this dataset, no other work seems to be able to present results on
this dataset. Our results is slightly lower than that in [10] which used quite different features
and different classifiers, and include a number of heuristic steps that are hard to reproduce.

Effectiveness of Adaptive Feature Fusion – In Tab. 2 we show the effectiveness of each
single descriptor and the fusion of them. It is evident when the three trajectory based descrip-
tors are fused together, action recognition performance is improved for all three datasets. The
improvement is particularly significant for the YouTube dataset (around 15% increase com-
pared to any single descriptor alone), which contains a large variety of action categories and
vastly different lighting conditions, camera angles, and camera movements. It is thus more
important for different complimentary information to be utilised simultaneously. Table 2
also shows that fusion of trajectory based features with 3D interest point based features can
lead to better performance, provided that they are fused in an adaptive manner as proposed in
this paper. In particular, if they are fused unconditionally without considering the reliability
of each type of feature given the camera movements, performance degradation is observed.
This result validates the effectiveness of the novel action representation and feature fusion
method formulated in this work.

Effectiveness of Collaborative Feature Selection – In Table 3 we compare the effectiveness
of our collaborative feature selection method with a mutual information based sequential fea-
ture selection method proposed in [21]. It is evident that our feature selection method indeed
improves action recognition performance compared to using all features without selection.
The effect from our feature selection is in particular more significant for the more difficult
YouTube dataset. In this dataset the unpredictable camera movements introduced large num-
ber of irrelevant features which cannot be removed completely even with our trajectory prun-
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UCF Films UCF Sports YouTube
MC-∆LDA 96.75% 86.90% 64.00%
Mutual Information [21] 96.10% 85.33% 62.20%
No Feature Selection 96.10% 84.00% 59.90%

Table 3: Comparing effectivenss of different feature Selection methods.

ing and region of interest detection. In comparison, the sequential feature selection process
is less effective. This suggests the importance of performing feature selection jointly and
collaboratively given highly correlated features extracted both instantaneously from interest
points and globally over time from trajectories.

5 Conclusions
We presented a novel framework for adaptive fusion and collaborative selection of visual
features for recognising realistic human actions captured from unconstrained environments.
We described an action representation scheme using a rich set of descriptors computed from
both local interest points and key point trajectories. We utilised an adaptive feature fusion
method for combining trajectory based descriptor with spatio-temporal interest point based
descriptors according to the detected camera movements. Crucially, we introduced a novel
feature selection approach by formulating a discriminative MC-∆LDA topic model for col-
laborative feature selection. The proposed framework outperforms most existing approaches
on action recognition against realistic and unconstrained action recognition datasets.
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