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Abstract

Linear subspace representations of appearance variation are pervasive in computer
vision. In this paper we address the problem of robustly matching them (computing the
similarity between them) when they correspond to sets of images of different (possibly
greatly so) scales. We show that the naive solution of projecting the low-scale subspace
into the high-scale image space is inadequate, especially at large scale discrepancies. A
successful approach is proposed instead. It consists of (i) an interpolated projection of
the low-scale subspace into the high-scale space, which is followed by (ii) a rotation of
this initial estimate within the bounds of the imposed “downsampling constraint”. The
optimal rotation is found in the closed-form which best aligns the high-scale reconstruc-
tion of the low-scale subspace with the reference it is compared to. The proposed method
is evaluated on the problem of matching sets of face appearances under varying illumi-
nation. In comparison to the naive matching, our algorithm is shown to greatly increase
the separation of between-class and within-class similarities, as well as produce far more
meaningful modes of common appearance on which the match score is based.

1 Introduction

One of the most commonly encountered problems in computer vision is that of matching
appearance. Whether it is images of local features [7], views of objects [6] or faces [14],
textures [13] or rectified planar structures (buildings, paintings) [10], the task of comparing
appearances is virtually unavoidable in a modern computer vision application. A particularly
interesting and increasingly important instance of this task concerns the matching of sets of
appearance images, each set containing examples of variation corresponding to a single class.

A ubiquitous representation of appearance variation within a class is by a linear subspace
[4, 5]. The most basic argument for the linear subspace representation can be made by ob-
serving that in practice the appearance of interest is constrained to a small part of the image
space. Domain-specific information may restrict this even further e.g. for Lambertian sur-
faces seen from a fixed viewpoint but under variable illumination [2, 3, 8] or smooth objects
across changing pose [12, 15]. What is more, linear subspace models are also attractive for
their low storage demands — they are inherently compact and can be learnt incrementally [9].
Indeed, throughout this paper we assume that the original data from which subspaces are
estimated is not available.

A problem which arises when trying to match two subspaces — each representing cer-
tain appearance variation — and which has not as of yet received due consideration in the
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literature, is that of matching subspaces embedded in different image spaces, that is, corre-
sponding to image sets od different scales. This is a frequent occurrence: an object we wish
to recognize may appear larger or smaller in an image depending on its distance, just as a face
may, depending on the person’s height and positioning relative to the camera. In most match-
ing problems in the computer vision literature, this issue is overlooked. Here we address it in
detail and show that a naive approach to normalizing for scale in subspaces results in inad-
equate matching performance. Thus, we propose a method which without any assumptions
on the nature of appearance that the subspaces represent, constructs an optimal hypothesis
for a high-resolution reconstruction of the subspace corresponding to low-resolution data.

In the next section, we first briefly overview the linear subspace representation, followed
by a description of the naive normalization. The proposed solution is described in this section
as well. In Section 3 the two approaches are empirically analyzed in detail. The main
contribution and conclusions of the paper are summarized in Section 4.

2 Matching Subspaces across Scale
Consider a set X C R containing vectors which represent rasterized images:

X:{Xl,...,XN} (1)

where d is the number of pixels in each image. It is assumed that all of the images represented
by members of X have the same aspect ratio, so that the same indices of different vectors
correspond spatially to the same pixel location. A common representation of appearance
variation described by X is by a linear subspace of dimension D, where usually it is the case
that D < d. If my is the estimate of the mean of the samples in X:

)
my = - ) X, @)
N=

then By € R?*P, a matrix with columns consisting of orthonormal basis vectors spanning the
D-dimensional linear subspace embedded in a d-dimensional image space, can be computed
from the corresponding covariance matrix Cy:

1
Cx=-

Vo1 (x; —my) (Xi—mX)T~ 3)

=

i=1

Specifically, an insightful interpretation of By is as the row and column space basis of the
best rank-D approximation to Cy:

2
By —arg min min Cx—BABT 4)
g B € RI*D A € RPXD || HF ’
B'B=1 A;j=0,i#]

where ||| is the Frobenius norm of a matrix.

2.1 The “Naive Solution”.

Let By € R%*P and By € R%*P be two basis vectors matrices corresponding to appearance
variations of image sets containing images with d; and dj, pixels respectively. Without loss
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of generality, let also d; < dj. As before, we shall assume that all images both within each
set, as well as across the two sets, are of the same aspect ratio. We wish to compute the
similarity of sets represented by orthonormal basis matrices Bx and By.

Subspaces spanned by the columns of By and By cannot be compared directly as they
are embedded in different image spaces. Instead, let us model the process of an isotropic
downsampling of a dj,-pixel image down to d; pixels with a linear projection realized though
a projection matrix P € R%*%_ In other words, for a low-resolution image set X C R%:

X ={x1,....,xn} (3)

there is a high-resolution set X* C R%  such that:
X*:{xfxi:Px?‘;izl,...,N}. (6)
The form of the projection matrix depends on (i) the projection model employed (e.g. bilin-

ear, bicubic etc.) and (ii) the dimensions of high and low scale images; see Figure 1 for an
illustration. Throughout this paper we used bilinear projection.

RZS x 100

Figure 1: The projection matrix P € modelling the process of downsampling a 10 x
10 pixel image to 5 x 5 pixels, using a bilinear projection model, shown as an image. For the
interpretation of image intensities see the associated grey level scale on the right.

Under the assumption of a linear projection model, the least-square error reconstruction
of the high-dimensional data can be achieved with a linear projection as well, in this case by
Pr which can be computed as:

Pr=P" (PP") . (7)

Since we assume that the original data from which Bx was estimated is not available, an
estimate of the subspace corresponding to X* can be computed by re-projecting each of the
basis vectors (columns) of By into R%:

B: = Pg By. (8)

Note that in general B} is not an orthonormal matrix i.e. By B} # I Thus, after re-
projecting the subspace basis, we orthogonalize it using the Householder transformation
[11], producing the high-dimensional subspace basis estimate By which can be directly com-
pared with By.

Limitations of the Naive Solution. The process of downsampling an image inherently
causes a loss of information. In re-projecting the subspace basis vectors, information gaps
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are “filled in” through interpolation. This has the effect of constraining the spectrum of
variation in the high-dimensional reconstructions to the bandwidth of the low-dimensional
data. Compared to the genuine high-resolution images, the reconstructions are void of high
frequency detail which usually plays a crucial role in discriminative problems.

2.2 Proposed Solution

We seek a constrained correction to the subspace basis By. To this end, consider a vector X}
in the high-dimensional image space R% which when downsampled maps onto x; in R%.
As before, we model this as a linear projection effected by a projection matrix P:

x; =Px}. 9)

Writing the reconstruction of x;', computed as described in the previous section, as X; + ¢;, it
has to hold:

x, =P (x +¢), (10)
or, equivalently:
0=Pc;, 11)

In other words, the correction term ¢; has to lie in the nullspace of P. Let B, be a matrix of
basis vectors spanning the nullspace which, given its meaning in the proposed framework,
we shall refer to as the ambiguity constraint subspace. Then the actual appearance in the
high-dimensional image space corresponding to the subspace By € R%*? is not spanned by
the D columns of B} but rather some D orthogonal directions in the span of the columns of
[Bj | Bc]. as illustrated in Figure 2.

Ambiguity constraint subspace Appearance subspace

(initial reconstruction)

Appearance subspace
(optimal refinement)

Figure 2: A conceptual illustration of the main idea: the initial reconstruction of the class
subspace in the high dimensional image space is refined through rotation within the con-
straints of the ambiguity constraint subspace.
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Let Bx. be a matrix of orthonormal basis vectors computed by orthogonalizing [B} | BC] :

By, = orth([B | B.]) (12)

Then we seek a matrix T € R(P+dn—d)xD

from the span of Bx,:

which makes the optimal choice of D directions

Bx. T =By, |:t1|t2|...tl)]. (13)

Here we define the optimal choice of T as the one that best aligns the reconstructed subspace
with the subspace it is compared with, i.e. By. The matrix T can be constructed recursively,
so let us consider how its first column t; can be computed. The optimal alignment criterion
can be restated as:

(By a) - (Bxc t; b)

t; = argmax max (14)
¢ ab [[all [[b]]
The right-hand side can be rewritten as:
(Bya)-(Bxctib) a _ Bo. t b a vt b (15)
=— By’ bBxct| = [ETeRTR)
[[all [[b]] ]l bl lall [[bll
where:
b)
U &6 0 .. 0 0 v
T (o)) 0 0 T
By B = | | : R
0 o0 op 0
(16)

is the Singular Value Decomposition of By! By, and 6; > 03 > ... > op. Then, from the
right-hand side in Equation (15), by inspection the optimal directions of a and b are the first
“output” direction u; and the first “input” direction v respectively, and t; = v;. The same
process can be used to infer the remaining columns of T, the i-th one being t; = v;.

Thus, the optimal reconstruction B} of By in the high-dimensional space, obtained by
the constrained rotation of the naive estimate B, is given by the orthonormal basis matrix:

BS(:BXC[VI---lvD] (17)
The key steps of the algorithm are summarized in Figure 3.

Efficiency and Implementation Issues. Before turning our attention to the empirical anal-
ysis of the proposed algorithm let us briefly highlight the low additional computational load
imposed by the refinement of the re-constructed class subspace in the high-dimensional im-
age space. Specifically, note that the output of Steps 1 and 3 in Figure 3 can be pre-computed,
as it is dependent only on the dimensions of the low and high scale data, not the data itself.
Orthogonalization in Step 2 is fast, as D — the number of columns in By — is small. Although
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Input:  Orthonormal subspace basis matrices Bx € R, By € R%
Projection model P € R% >

Output: Optimal reconstruction BY of the high-dimensional space corresponding to Bx

1: Compute the reverse projection matrix
Py =P’ (PPT)""

2: Compute the initial naive reconstruction
B;} = orth (PR Bx)

3: Compute a basis of the ambiguity constraint subspace
B, = nullspace(P)

4: Compute a joint basis of the initial reconstruction and the ambiguity constraint subspace
Bx. = orth( [B. | By] )

6: Perform Singular Value Decomposition of By By,
By" By, =USV/ =UZ [v;| ... |vp]"

7: Extract the orthonormal basis of the best reconstruction
BS(:BXC [Vl | |VD]

Figure 3: A summary of the proposed matching algorithm.

at the first sight more complex, the orthogonalization in Step 4 is also not demanding, as B,
is already orthonormal, so it is in fact only the D columns of By which need to be adjusted.
Lastly, the Singular Value Decomposition in Step 6 operates on a matrix which has a high
“landscape” eccentricity so the first D “input” directions can be computed rapidly, while
Step 7 consists only of a simple matrix multiplication.

3 Experimental Analysis

The theoretical arguments put forward in the preceding sections were evaluated empirically
on the problem of matching sets of images of faces. For this we used a collection of video
sequences of pseudo-random head motion described in [1].

Protocol. Evaluation was performed by constructing class models with downsampled face
images in a single illumination setting. Thus each class represented by a linear subspace
corresponds to a single person and captures his/her appearance in the training illumination.
Images downsampled to 25 x 25, 20 x 20, 15 x 15, 10 x 10 and 5 x 5 pixels were used in turn.
Training subspaces were then matched against subspaces estimated from higher scale data —
we used 50 x 50 pixel images throughout — and each query subspace classified to the class
of the highest similarity. The similarity between two subspaces was expressed by a number
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in the range [0, 1], equal to the correlation of the two highest correlated vectors confined to
them (as in Equation (14) in the previous section).

Class separation. First, we looked into the effects of the method proposed in Section 2.2
on class separation, in comparison to the naive method of Section 2.1. We quantified this
as follows. For a given pair of training and “query” illumination conditions, we evaluated
the similarity p; ; between all image sets i acquired in the training illumination and all sets j
acquired in the query illumination. Thus, the mean confidences e,, and ¢;, of respectively the
correct and incorrect matching assignments is given by:

100
éw=1 moZ“' (18)
100 100
& =1- 150599 Z Z Pi.j- (19)

Hél

The corresponding separation is proportional to e, and inversely proportional to e,,:

p=epe, . (20)

The separation was evaluated separately for all training-query illumination pairs for the
naive method and the proposed solution across different matching scales, and plotted in
Figure 4.

Firstly, note that improvement was observed for all illumination combinations at all
scales. Unsurprisingly, the most significant increase in class separation (~ 8.5-fold mean
increase) was achieved for the most drastic difference in training and query sets, when sub-
spaces embedded in a 25-dimensional image space — representing the appearance variation
of images as small as 5 x 5 pixels — was matched against a subspace embedded in the image
space of a 100 times greater dimensionality.

It is interesting to note that even at the more favourable scales of the low resolution input,
although the mean improvement was less noticeable than at extreme scale discrepancies, the
accuracy of matching in certain combinations of illumination settings still greatly benefited
from the proposed method. For example, for low resolution subspaces representing appear-
ance in 10 x 10 pixel images, the mean separation increase of 75.6% was measured; yet, for
illuminations “1” and “2” — corresponding to the index 42 on the abscissa in Figure 4 (b) —
the improvement was 473.0%.

The change effected on the inter-class and intra-class distances is illustrated in Figure 5,
which shows a typical similarity matrix produced by the naive and the proposed matching
methods. The mean separation increase across different scales is shown in Figure 6 — 8.5-
fold for 5 x 5 pixel images, 1.75-fold for 10 x 10, 1.25-fold for 15 x 15, 1.08-fold for 20 x 20
and 1.03-fold for 25 x 25.

Lastly, the inferred most similar modes of variation contained within two subspaces rep-
resenting face appearance variation of the same person in different illumination conditions
and at different training scales is shown in Figure 7. As the scale of low-resolution images is
reduced, the naive algorithm of Section 2.1 finds progressively worse matching modes with
significant visual degradation in the mode corresponding to the low-resolution subspace. In
contrast, the proposed algorithm correctly reconstructs meaningful high-resolution appear-
ance even in the case of extremely low resolution images (5 x 5 pixels).
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(@) (5%5)«— (50 x50)

(©) (15 % 15) «— (50 x 50)

a0

(b) (10 x 10) +— (50 x 50)

() (20 x 20) «— (50 x 50)

a5

Figure 4: The increase in class separation U (the ordinate; note that the scale is logarithmic)
over different training-query illumination conditions (abscissa), achieved by the proposed
method in comparison to the naive subspace re-projection approach. Note that for clarity the
training-query illumination pairs were ordered in increasing order of improvement for each
plot; thus, the indices of different abscissae do not necessarily correspond.

Figure 5: Typical similarity matrices resulting from the naive (left) and the proposed (right)
matching approaches. Our method produces a dramatic improvement in class separation as
witnessed by the increased dominance of the diagonal elements of the similarity matrix.
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Class separation - mean relative improvement

10 15 20
Image size

Figure 6: Mean class separation increase achieved, as a function of size of the low-scale im-
ages. Shown is the ratio of class separation when subspaces are matched using the proposed
method and the naive re-projection method described in Section 2.1. The rate of improve-
ment decay is incrementally exponential, reaching 1 (no improvement) when the d; = dj,.
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(@) (5x5) < (50 x 50) (b) (10 x 10) +— (50 x 50) (©) (15 % 15) «— (50 x 50)
. 5 '3 @

(d) (20 x 20) +— (50 x 50) (e) (25 x25) «— (50 x 50)

Figure 7: The inferred most similar modes of variation contained within two subspaces rep-
resenting face appearance variation of the same person in different illumination conditions
and at different training scales. In each subfigure, which corresponds to a different training-
query scale discrepancy, the top pair of images represents appearance extracted by the naive
algorithm of Section 2.1 (as the left-singular and right-singular vectors of By’ By); the bot-
tom pair is extracted by the proposed method (as the left-singular and right-singular vectors
of By” By,).
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4 Conclusion

In this paper we described a method for matching linear subspaces which represent appear-
ance variations in images of different scales. Our approach consists of an initial re-projection
of the subspace in the low-dimensional image space to the high-dimensional one, and subse-
quent refinement of the re-projection through a constrained rotation. Using facial appearance
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images, on a large data set of 700 image sets in different illuminations, we showed that the
proposed algorithm successfully reconstructs the personal subspace in the high-dimensional
image space even for low-dimensional input corresponding to images as small as 5 x 5 pixels,
improving average class separation by an order of magnitude.
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