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In this paper, we present a method that allows simultaneous surface recon-
struction and camera localization from monocular images in static scenes.
The novel aspect of the method is its independence from any explicit
feature detection schemes. Instead, it uses method similar to intensity-
based bundle adjustment. Thus, it is better suited for 3D reconstruction of
weakly textured surfaces.

A number of methods with similar functionality have already been
described [4, 6]. All of these methods, however, rely on some kind of
feature detection schemes, such as such as SIFT [2] features, FAST corner
detection [8], and so on.

The basic concept of our algorithm can be summarized as follows: In
traditional bundle adjustment, coordinates of 3D points that are associated
with feature points are recovered from a set of 2D feature position mea-
surements. This approach will obviously work only if a feature detecting
scheme can be used at all. In our case, we do not assume that robust fea-
ture extraction is possible, and thus we do not work with 2D positions,
but with image intensities.

Originally, our method was inspired by a stereo disparity tracking
method developed by Ramey [7]. The generalization that we are sug-
gesting leads to an optimization problem that corresponds to intensity-
based bundle-adjustment that is restricted to two frames. Thus, our so-
Iution shares some characteristics with typical bundle-adjustment algo-
rithms [1, 9].

Our method establishes a depth map of the region of interest within a
template image that has been chosen by the user. That depth map is then
a function Sq (u,v) mapping a k-dimensional parameter vector d together
with image coordinates (1,v) € R? to a depth value A € R at the spec-
ified coordinate. Given intrinsic camera parameters, this depth map can
actually be interpreted as a 3D surface. Let

e d;, denote the k-dimensional vector of parameters of the model
describing the depth map.

e Sa(u,v) denote a function of type R¥ x R — R that maps model
parameters together with image pixel coordinates to 1D pixel depth
values.

e p, = (t,,q,) denote the extrinsic camera parameters correspond-
ing to image n, consisting of translation vector t,, € R? and rotation
quaternion q, € R%.

o T(t,q,p) : R3 x R* x R — R3 is a transformation mapping 3D
spatial coordinates p to 3D coordinates in the camera frame de-
scribed by a translation vector t and a rotation quaternion q.

e 71(p) be the projection of a 3D point p to 2D image coordinates, ac-
cording to the internal camera calibration parameters of the camera
used.

e [,(x,y) be the image function of image n, containing all pixel val-
ues. I is hence the reference image function.

(u1,v1)y---, (Um,vm) denote the pixel coordinates of the m refer-
ence pixels, chosen from the ROI in the reference image.

The problem of determining surface parameters and camera position
can then be stated as minimization problem for the following objective
function o(d, py,):
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In other words, we are seeking a function that warps image coordinates
from the reference image [y to the current image I, such that intensity
differences are minimized. The function c is a cost function that should
be chosen to be robust against outliers, such as the Pseudo-Huber [1, p.
619] cost function.

It is clear that, to actually recover the model parameters from the
scene, we need some method to minimize the cost function described
above. Since we are dealing with a constrained problem, an adequate
method for optimization is Sequential Quadratic Programming (SQP). For
a more detailed description of the method, the reader is referred to [5].

The approach as described so far worked well in situations where
camera movement is sufficiently smooth and no large pixel displacements
occur between subsequent frames. However, problems occured when that
was not the case. This was to be expected, since the algorithm operates
on intensity values and will have trouble aligning with the correct values
again if they are too far away.

We addressed this problem using Lucas-Kanade optical flow [3] to
determine the camera position in a seperate optimization step before the
intensity-based optimization is taking place:

o' (pn) = 26'((14?%) = (T (Pn, 7us,v, (Sa(ui,vi)))) )

Thus, we can summarize our strategy as using optic flow for bridg-
ing large gaps in camera movement, while intensity-based optimization
refines the model and camera parameters and essentially prevents drifting
away from the original point intensity values. This could easily occur if
only optical flow based optimization would be performed.
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