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Abstract

Simultaneous localization and mapping (SLAM) is a basic prerequisite in autonomous
mobile robotics. Most existing visual SLAM approaches either assume a static environ-
ment, or simply ’forget’ old parts of the map to cope with map size constraints and scene
dynamics. We present a novel map representation for sparse visual features. A new 3D
point descriptor called Histogram of Oriented Cameras (HOC) encodes anisotropic spa-
tial visibility information and the importance of each three-dimensional landmark. Each
feature holds and updates a histogram of the poses of observing cameras. It is hereby
able to estimate its probability of occlusion and importance for localization from a given
viewpoint. In a series of simulated and real-world experiments we prove that the pro-
posed descriptor allows to cope with dynamic changes in the map, improves localization
accuracy and enables reasonable control of the map size.

1 Introduction
Simultaneous Localization and Mapping (SLAM) is the problem of position estimation in
a previously unknown environment, and simultaneously and incrementally building an en-
vironmental map. It is an essential prerequisite for many high level applications such as
autonomous navigation, path planning or obstacle avoidance (e.g. [26, 31]). Currently there
exists an abundance of proposed solutions, using a variety of different sensors in indoor,
outdoor, underwater or airspace environments.
Most existing solutions assume a static environment containing only stationary objects. The
map is either continuously updated, or constructed once and used for localization afterwards.
Rapid environmental changes like moving persons are usually filtered out, while changes
with longer duration distort the map. SLAM approaches, which are based on dense range
readings or higher level object representations, might be able to detect and handle such
changes [6, 29], but approaches based on sparse local features can not. The key problem
thereby is how to handle map features which should be visible from a certain viewpoint, but
are actually not observed. Most existing SLAM approaches simply add all incoming sensor
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readings over time but do not reject existing features anymore. This results in ever growing
maps and may also lead to data association problems.
In this work we address the SLAM problem based on local features within a Structure from
Motion (SFM) framework. Our sensor is a stereo camera, producing a set of local feature
points at each time step, and associated local descriptors. We address the following prob-
lems:

• How to handle short- and long-term environmental changes.

• How to balance the map size.

• How to improve data association in a dynamic environment.

We developed a new 3D descriptor to incorporate visibility information and feature impor-
tance through a three-dimensional histogram centered around each landmark. Each descrip-
tor bin tracks how often its associated landmark has been observed from a specific location.
Hence, short- and long-term dynamics do not affect localization and the constructed map
implicitly adapts to dynamic changes during mapping.

2 Related Work
While SLAM approaches based on sparse local features exist for a number of sensor modal-
ities, we mainly concentrate on vision systems, subdivided into two categories: those fol-
lowing a probabilistic approach by recursively updating the probability of feature location
and camera pose, and geometric approaches incorporating SFM techniques to refine map
geometry.
Davison et al. [4] and Eade and Drummond [7] developed monocular SLAM systems using
an extended Kalman filter (EKF) and a particle filter respectively. Using EKF, the size of the
filter matrix is cubic in the number of features and filter updates become very costly. The
particle filter approach requires lots of particles to track the robot pose. Recently, authors
proposed to split the mapping procedure to local submaps, followed by a routine to merge
them (e.g. [24, 25]). Chli et al. [2] propose a tree-like hierarchy where 3D point features are
grouped into clusters from coarse (independent) to fine (all grouped together) to speed up
monocular Kalman Filter SLAM. In order to reduce the size of the EKF filter matrix Gee et
al. [10] fit planes to pointcloud data.
Klein and Murray [16, 17] use sparse bundle adjustment over selected keyframes to refine
camera pose and map structure. They successfully mapped a small office environment with
a single hand-held camera only. They also fused their Parallel Tracking and Mapping frame-
work [15] with a bundle adjustment approach proposed by Sibley et al. [27] using a relative
representation of camera poses and 3D points to reduce computational effort. Similarly,
Konolige and Agrawal [18] developed FrameSLAM, a stereo mapping approach. They re-
duced computational effort of bundle adjustment on large feature maps through a nonlinear
reduction of frames and image measurements.
All mentioned approaches assume a static environment and perform mapping in a single run
only. Research focusing on dynamic environments is sparse and can be categorized in two
fields: those focusing on short-term changes only, such as moving people or cars within an
otherwise static environment, and others concentrating on less frequent changes within life-
long operations. Wang et al. [30] proposed to maintain a stationary and a dynamic occupancy
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grid map, constructed out of laser data. Lidoris et al. [20] combined a Rao-Blackwellized
particle filter for robot pose estimation with a person tracker for moving object detection.
Other authors try to filter out false measurements from 2D laser data before incorporating
them into an occupancy grid map [6], or use map matching between the current scan and the
already generated map for moving object detection [29]. There also exist purely statistical
approaches to retrieve the most likely map within highly dynamic scenes as proposed by
Hähnel et al. [11].
In dynamic visual map building the main research focus lies in rejecting independently mov-
ing objects. An approach using stereo-cameras to estimate the robot position, the static map
and the trajectory of moving objects is proposed by Sola et al. [28]. They use a Kalman filter
for each moving object to keep track of its pose within the map. Migliore et al. [22] use two
separate EKFs for the static and dynamic parts in the scene to keep the state vector (pose and
landmarks) small, and to track the dynamic scene elements. They propose to use uncertain
projective geometry to detect dynamic elements. Results are provided only within a small
office scene using a few features.
Little work has addressed the problem of long-term mapping. Dissanayake et al. [5] reduced
the computational effort within an EKF-based SLAM algorithm by erasing laser range land-
marks with low information. The information content is estimated through the diagonal
elements of the covariance matrix. They showed that localization errors within the reduced
map are relatively small compared to standard EKF approaches. Biber and Duckett [1] create
occupancy maps from laser data at different timescales to incorporate new elements while
preserving the old and stable ones. They evaluated their method based on localization ac-
curacy over several weeks. Recently, Hochdorfer and Schlegel [14] addressed the problem
of ever growing number of landmarks within a feature based map, especially in life-long
operations. To avoid extensive growing of the EKF state-vector, they limit the number of
allowed landmarks in a two stage process: First, k-means clustering combines points which
are observed from neighboring robot poses. Second, landmarks with the lowest localiza-
tion benefit within each cluster, estimated out of their covariances, are removed. Similarly,
Konolige and Bowman [19] adapted FrameSLAM [18] to update a given map in case of new
or removed features and to recover from localization failure. They first build a connectivity
graph between keyframes, based on the number of successful SIFT features, and delete those
keyframes with a very high SIFT matching percentage to the neighbors. They evaluated their
system in a dynamic indoor environment of about 50×50m2, including moving people and
various lighting conditions. They successfully managed to update a map after removed and
added furniture and kept the number of keyframes relatively small.
To summarize, all vision based methods use either object detection and tracking to separate
moving objects from the static map, or make use of spatial clustering in combination with
heuristics to discard weak features. They require prior knowledge of the scene and the type of
moving objects to track them adequately. In contrast, our approach encodes feature visibility
during mapping and constructed map automatically adapts within a changing environment.

3 Feature Descriptor
To implicitly handle the ambiguity between scene dynamics and occlusion, we propose to
add spatial visibility information to local map features. To encode the visibility and impor-
tance of each three-dimensional landmark in a map, we develop the Histogram of Oriented
Cameras (HOC) descriptor.
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(a) (b)
Figure 1: Proposed HOC-descriptor. (a) An uninitialized HOC-descriptor around a feature
point consisting of three depth layers. (b) Update of the descriptor with three sensor posi-
tions. Darker colors indicate a higher weighted bin.

Each map feature holds information of its location, a descriptor for data association, and a
histogram which keeps track of how often the feature has been observed from a specific loca-
tion. The histogram partitions the space around a feature by a set of k concentric spheres with
radii r1, ...,rk. Each sphere Si is approximated by an icosahedron consisting of m faces fi j,
j = 1, ...,m (see Figure 1(a)). The discrete polyhedral approximation allows us to partition
the sphere surface in triangles of equal size and results in a fast bin search given a camera
position. A single histogram bin corresponds to the volume Vi j of a triangular pyramid frus-
tum between two consecutive radii ri,ri+1, limited by two corresponding faces fi j, f(i+1) j.
A logarithmic spacing of the radii allows us to cover a large volume around each landmark,
assuming that spatial partitioning is more important for the closer features.
Given a camera pose and a HOC descriptor, we determine the associated histogram bin Vi j in
the following way: First, we determine the corresponding radius interval by calculating the
Euclidean distance d between feature and camera center. Second, intersection between the
icosahedron and the line from feature to camera center returns the valid face f j. We orga-
nized the circumcenters of each triangle in a kd-tree. After projecting the camera center onto
the sphere a nearest-neighbor search in the tree returns the corresponding face. The kd-tree
is hereby identical for all HOC-descriptors, and needs to be stored only once.
Each histogram consequently consists of km bins. Each bin holds an integer ni j, correspond-
ing to the number of observations from sensors resting in Vi j. It is important to note that ni j
is increased in case of a positive observation, and decreased if the sensor should observe the
feature, but did not produce a positive match.
From ni j, an importance weight pi j is calculated, according to a Sigmoid function:

p(ni j) =
1

1+ e−λni j
, (1)

where λ is a user defined scalar ranging between 0.3 (low dynamic scene) and 0.9 (high
dynamic scene). The higher p, the more probable it is to observe this feature with a sensor
resting in bin volume Vi j. The bin value n is clamped such that 0.05 < p(n)< 0.95. Figure
1(b) shows the update procedure of a HOC-descriptor given three camera positions, where
darker gray values indicate a higher weight.
This descriptor allows us to add the following information to the map:

• spatially constrained visibility by increasing ni j,
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• probable occlusion/dynamics by decreasing ni j,

• probably vanished features by looking at the histogram maximum.

Additionally, different feature descriptors may be added to the histogram bins to model view-
dependent appearance.
How this descriptor can be embedded in a SLAM framework, especially in dynamic envi-
ronments, is addressed in the following section.

4 Simultaneous Localization and Mapping
The concept of our descriptor is general, we demonstrate its applicability to visual SLAM.
Our SLAM algorithm is closely related to the work of Klein and Murray [16]. A hand-
held stereo-rig is used to estimate the sensor pose whilst building a sparse map of three-
dimensional feature points. In the following, the algorithm is described. Later, the HOC-
descriptor is added to the method.

Stereo Pair

MAP

VOCTREE

detected features & 
predicted pose

corresponding
features

refined pose &
adjusted features

new features

HOC update &
resized map

adjusted map

Pose Prediction

Pose Correction

Loop Closing Map Update

Figure 2: Proposed SLAM framework.

4.1 Basic Visual Localization and Mapping
The environment is represented by a set of landmarks X and camera poses C, located in a
global coordinate frame W. The camera pose is C = [R | T ], where T3×1 is a translation vector
and R3×3 is a rotation matrix. Each map point is represented by its homogeneous coordinates
X = [x y z;1]T . For feature extraction and data association we make use of the well-known
SIFT-descriptor proposed by Lowe [21], which is attached to every feature point.
Our SLAM system consists of four main parts highlighted in Figure 2: pose prediction, pose
refinement, map update and loop closing. With every new stereo image pair, keypoints are
detected in the stereo frames and a point cloud X t

c in the camera centered coordinate frame
is built.
For pose prediction, the valid descriptors are matched against the previous stereo pair to gen-
erate a set of corresponding 3D points X t−1

c and X t
c . The relative motion from Ct−1 to Ct is

estimated by computing a direct least squares solution between the two point sets [12]. To
be robust against matching outliers, a RANSAC routine is applied [8]. By knowing Ct−1 and
the relative motion, a predicted pose Ĉt is calculated.
To establish correspondences between the map and the current view Ĉt , we perform SIFT-
descriptor matching between observed points and map points in the field of view of Ĉt .
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Again, a RANSAC routine is applied to robustly estimate the C̃t relative to the map.
Sparse bundle adjustment (see Appendix 6 of [13]) over the last N frames is used to refine
camera pose and map points through minimizing reprojection errors. To update the map, all
unmatched features are added.
For loop closure detection, we use the vocabulary tree proposed by Nister et al. [23], which
has been successfully applied before [9] [3]. Once a loop is detected, sparse bundle adjust-
ment is applied over the entire map.
If global re-localization is required, we perform exhaustive SIFT-matching of the currently
observed features against all features of the map. Camera pose is then estimated through a
3-point RANSAC algorithm as used for pose estimation.
A schematic of the mapping procedure is shown in Figure 2. Adaptations of this standard
SLAM procedure to incorporate the HOC-descriptor are described in the subsequent section.

4.2 Extension to dynamic map building
A SLAM framework which simply adds every valid feature to the map will fail in a dynamic
environment. Either the map becomes too large to handle, or data association will fail be-
cause of ambiguities.
We hereby augment the SLAM framework described in the previous section by the HOC-
descriptor to address these problems. In this case, the pose correction makes use of visibility
information from the HOCs, and the map update includes a HOC update with a map thinning
routine (see red highlighted step in Figure 2).
During pose correction, we are able to perform more effective prefiltering by selecting all
map points in the view cone with an importance weight exceeding a predefined threshold.
Every time a new feature is added, its HOC-descriptor is created and updated according to
the refined camera pose. The remaining bins are marked unseen. HOC-descriptors which
successfully matched during the pose correction, are upweighted, including those with a low
importance weight. Map points which are in the view cone, but did not produce a match, are
downweighted.
To keep a constant map size we apply a simple thresholding operation to the reweighted bins.
If the maximum of all bins of a descriptor drops below a threshold, the associated landmark
is removed from the map. In all of our experiments this threshold was set to pmin = 0.2.

5 Experiments
We performed a series of synthetic and real-world experiments using a stereo-camera with
a baseline of 12cm and a resolution of 640× 480. We compared the performance of the
standard SLAM algorithm with its extension using the HOC-descriptor. In both scenarios
we evaluated the map growth over time and the pose estimation error, where groundtruth
was available. Regarding parametrization, we always chose 24 histogram bins in our exper-
iments, and adapted parameter λ manually, according to the scene dynamics.

5.1 Synthetic Experiments
We simulated both a static and a moving stereo-camera with a resolution of 640×480 pixels
surrounded by static and dynamic objects. Objects are hereby represented as 3D point clouds
of variable size covering approximately 10% of the image.
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The static camera allows to quickly evaluate localization accuracy and easy visualization.

translational error [mm] rotational error [deg] map size
testcase standard HOC standard HOC standard HOC
Simulation 1 12.1/179.1 0.9/41.5 0.46/6.10 0.05/2.41 1526 435
Simulation 2 8.6/79.8 0.2/0.4 0.33/2.80 0.00/0.01 1670 441
Simulation 3 113.5/352.5 0.4/2.1 2.78/8.66 0.00/0.01 3425 825
Simulation 4 12.2/97.2 1.2/3.1 0.15/4.36 0.06/0.13 1024 295

Table 1: Synthetic experiments. Mean/maximal translational and rotational errors were eval-
uated. The map size after the last frame is also given. Simulations 1, 2, 3 included a static
camera with differently moving objects, while Simulation 4 included a moving camera.

(a)

(b)

(c)
Figure 3: Map evolution for Simulation 1. Six objects move in horizontal direction in front
of the stereo camera. (a) Some images over time. (b) Backprojected map for standard SLAM
procedure over time. (c) Backprojected map for the extended SLAM procedure over time.
Saturation encodes the feature weight.

Throughout the experiments with a moving camera, we applied a constant camera velocity of
0.3 m/sec and captured at 25 frames per second. The image measurements, i.e. projections
of the 3D points, were corrupted with Gaussian noise (σ = 0.5). Objects were moving with
a constant velocity of 0.5 m/sec lying approximately 80 to 220 cm in front of the camera.
We conducted four synthetic experiments, where three of them assume a static stereo sys-

tem (Simulation 1 - Simulation 3) and one simulates a translational moving stereo system
(Simulation 4). We evaluated the camera pose (translational and rotational error) at every
frame, and monitored the map size over time. Some images from Simulation 1 are shown in
Figure 3, where the reprojected object points for five frames are presented (see Figure 3(a)),
the backprojected map of the standard SLAM algorithm (Figure 3(b)) and the extended al-
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(a) (b)
Figure 4: Localization error (a) and map size (b) over time for Simulation 1. Standard SLAM
approach (light gray) compared to the extended approach (black).

gorithm (Figure 3(c)). The weight of each landmark is visualized by the saturation of each
feature point in Figure 3(c). Using the HOC descriptor, old positions disappear after a few
frames. More recent positions of the moving objects are given a higher weight and assist
localization. Pose estimation stability and map growing for Simulation 1 over time are pre-
sented in Figure 4. The results for all synthetic experiments are summarized in Table 1.

5.2 Real-world Experiments
Tests (named Testset 1 - Testset 3) have been made with the stereo-rig mounted statically
on a tripod to get groundtruth data for camera pose and relocalization performance in high
dynamic scenes. Objects in front of the camera have been moved or deleted (see Figure
5(a)) over a duration of 570, 490 and 276 frames respectively. Table 3 gives the mean and
maximum translational and rotational errors for all test sets.
In addition, we evaluated re-localization performance at every 30-th frame with the method
described in Section 4. The mean and maximal pose errors are summarized in Table 2 (videos
of two localization experiments are shown in the supplementary material named Testset1.avi
- Testset2.avi).
Finally, we moved the camera multiple times over an office-table denoted as Testset 4 (see
Figure 5(b)) while manipulating dominant objects (remove, occlude or re-appear after some
time). A comparison of resulting maps and camera trajectories for the standard and HOC
approach can be found in the supplementary material (Testset4Map.jpg). We also acquired
larger sequences named Testset 5 and 6 (904 and 1024 frames respectively), covering a
11× 7m2 flat and a 14× 17m2 office scene (see Figure 5(c)). In both cases, standard and
HOC approach produced comparable camera trajectories although the extended algorithm
produced a smaller feature map. Results for the final map size are given in Table 3. The final
maps and camera trajectories for Testsets 5 and 6 are shown in the supplementary material
(Testset5(6)HoC.avi and Testset5(6)std.avi).

6 Conclusion
The histogram of oriented cameras allows to encode spatial visibility information on a feature
basis. In contrast to most existing approaches, which encode visibility in a camera-centered
way (e.g. using keyframes), we propose to add a per-feature spatial histogram of the number
of observations. Although the amount of saved data per feature is larger, we finally save
memory by keeping the overall map size small. In our experiments we reduced memory
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(a)

(b)

(c)
Figure 5: Real world experiments. (a) Testset 3 assuming a static camera with various
moving objects. (b) Testset 4 taken from a small office scene. (c) Testset 6 covering a
larger office environment with opened/closed doors, several occluders and removed objects.

translational error [mm] rotational error [deg]
testcase standard HOC standard HOC
Testset 1 15.9/41.3 6.7/28.5 0.78/1.96 0.31/1.31
Testset 2 187.7/281.2 20.1/76.4 8.86/12,75 1.03/3.53
Testset 3 9.2/17.0 3.5/8.6 0.56/1.10 0.19/0.43

Table 2: Re-localization error for three real-world experiments, assuming a static camera.
The mean/maximum rotational and translational errors are presented for both approaches.

consumption from 26% up to 85%. Considering computation time, the histogram update,
and the query of a specific histogram bin are comparably cheap.
Tracking accuracy (i.e. determining relative camera motion between subsequent frames) is
good with both methods, because ambiguous parts of the map are filtered through the repro-
jection error. Localization without rough prior knowledge of the pose is more robust with
our method, though. Especially after a long time of operation, the standard map becomes
filled up with ambiguous data, and correct localization may fail.
An open issue is the undefined behavior after loop closing. To build the histogram we have
to assign an orientation to each feature. A bundle adjustment procedure after loop closing
might re-orient many feature points and cameras relative to each other, which results in in-
consistent histograms. Yet, in our experiments we did not experience a failure of the system
due to this effect.
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translational error [mm] rotational error [rad] map size
testcase standard HOC standard HOC standard HOC
Testset 1 16.5/28.9 5.7/18.1 0.82/1.44 0.28/1.03 7904 816
Testset 2 190.2/281.4 17.6/55.7 8.99/12.94 0.95/3.07 11899 1593
Testset 3 30.7/57.1 2.5/15.7 1.51/2.81 0.11/0.88 6192 855
Testset 4 X X X X 6838 3817
Testset 5 X X X X 8992 1627
Testset 6 X X X X 15120 3680

Table 3: Results for the real world experiments. Mean/maximum pose errors and final map
size are given.
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