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The analysis and extraction of textural information from image data is a
relevant topic in the image analysis and processing domains, mainly due
to the large number of application areas that it concerns.

The Hierarchical Multiple Markov Chain (H-MMC) family of models
has been recently introduced [2] to provide a simple and effective tool to
represent the visual properties of an image at any scale of observation, by
means of its “broad sense” textural information: the core of the modeling
strategy is the joint definition of texture components (patterns) at different
scales and spatial interactions among them. The Texture Fragmentation
and Reconstruction (TFR) algorithm has been proposed as a hierarchical
segmentation technique based on the H-MMC model. In this work, we
carry on with the development of these tools by enriching the modeling
approach with the use of a graph based image representation.

The original TFR algorithm consists of three steps: a color-based
classification (CBC), a spatial context based clustering (SBC) and an
iterative texture merging procedure. The first two steps constitute the
fragmentation phase: first, a map of color-homogeneous areas is gener-
ated (the unsupervised TS-MRF segmentation algorithm described in [1]
is used) and then a clustering of the connected components (fragments)
within each color class finally provides a partition of the image into a
set of elementary image patterns, homogeneous for both color and spatial
context. The hierarchical texture reconstruction is performed in the last
step, where these elementary patterns are merged two-by-two resorting to
a hierarchy of nested segmentation maps at different scales of observation.

The scope of this work is limited to the SBC block. It is based on a
characterization of each connected component of the color map (output
of CBC) by means of a suitable description of its color context: given Ω

the set of color classes available, Sω a subset of pixels of the same color
class ω ∈ Ω, and ωk the label of its k-th connected component, the latter
is associated with a |Ω|×8 matrix of transition probabilities:

p j(ω
′|ωk)= |S

ωk
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representing the probability of finding a pixel of color ω ′ when moving
from a location of the fragment ωk in the direction j. In the original
version of the algorithm, these matrices are reduced through Principal
Component Analysis and used as fragment features in a simple K-means
clustering. This generally leads to a quick and reliable output. However,
in more complex cases, for example when color information is limited or
in presence of significant scale differences, K-means is likely to perform
unsatisfactorily, mainly due to the insufficient number of samples for a
statistical clustering and the absence of a spatial constraint (position of
the fragments is not taken into account).

To overcome this limitations, our key idea is to consider the spatial
proximity among fragments and measure context differences locally in-
stead of relying on global statistics. This is realized by associating to
each map of color-uniform fragments a graph based representation that
allows for the definition of neighbourhood relationships, allowing for a
cluster formation aided by an superimposed topology. Two main issues
have been dealt with: the definition of suitable graph structures, to be as-
sociated to each partial map of generally non-adjacent fragments, and the
definition of the clustering method and the metrics on which it relies.

Building the Graph Representation: for each map of fragments
from the same color class ω , see for example Fig. 1(b) and the red subset
of Fig. 1(a), a graph Gω is needed where each node is associated to a frag-
ment and a link exists between two nodes if the corresponding fragments
are neighbours in some sense. To define neighbouring relationships, we
generate adjacencies among fragments by means of uniform-speed label
propagation. This is here realized using a simple queue-based algorithm
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Figure 1: Toy example for the new SBC block: 1(a) a sample texture
mosaic, 1(b) red image subset, 1(c) label propagated sub-map, 1(d) corre-
sponding region adjacency graph with annotated links, result of the clus-
tering with 1(e) the new and 1(f) the old SBC version.

derived from mathematical morphology [3]. For the toy example of Fig. 1,
the result of the procedure is shown in Fig. 1(c). The desired representa-
tion corresponds to the region adjacency graph of this map (see Fig. 1(d)).

The Linked Spatial Based Clustering (L-SBC): the new SBC block
here proposed relies on a modified definition of finest-scale pattern: be-
side being a set of spectrally homogeneous connected regions exhibiting
similar spatial contexts, we also require each of these patterns to be “con-
nected”, in the sense of the graph based representation introduced above.
Detecting image patters is hence equivalent to retrieving the correspond-
ing subgraphs. To achieve this goal, links are annotated by means of a
context similarity metric derived by the probabilities in Eq. 1, namely:
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with Ak
rs being a (|Ω|−1)×8 matrix whose element r,s equals to pr(s|ωk)

(see Eq. 1) and where transition to the same color class of the fragment
are neglected. Once a threshold CSth is chosen as to keep only a fixed
percentage ψL of the total number of links from the entire |Ω|-color graph
representation, all links below this threshold are suppressed resorting to
the desired graph partitions. A (partial) result for the toy example is shown
in 1(e), along with the one for the old SBC version in 1(f).

The texture merging is obtained using the procedure described in [2]:
sequentially, the image segment that exhibits the lowest Texture Score,
a measure of “texture completeness”, is merged with the neighbouring
region with which it shares the largest part of its boundary.

Assessment of the new version of the algorithm has provided promis-
ing results, both on a texture segmentation benchmark and on real-world
images from the remote sensing domain.
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