Inferring Image Transformation and Structure from Motion-Blurred Images
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While capturing images of a scene, the relative motion between the cam-
era and the scene during exposure leads to motion-blur in images. The
convolution model for motion-blur is applicable only when the camera
motion is restricted to in-plane translations. Blur arising due to rotation
and out-of-plane translation of camera cannot be modeled using convolu-
tion with a single blur kernel [3, 5, 6]. In this paper, we model the motion-
blurred image as the weighted average of geometrically transformed ver-
sions of the reference image. The model implicitly accounts for the space-
variant nature of blurring that occurs due to unrestricted camera motion.
In many applications, motion-blur can occur while capturing scenes with
depth variations from a moving camera. During the camera motion, the
apparent movement of the scene points in the image is related to the shape
of the scene [1]. Consequently the extent of blurring at a point is governed
by both the camera motion and the scene structure.

Initially, we consider scenes having constant depth and develop an
algorithm to estimate the transformations undergone by the reference im-
age during exposure. We next consider images of scenes with depth vari-
ations. Based on the estimated transformations, we relate the depth at a
scene point to the blurred image intensity through the point spread func-
tion. Depth estimation is posed as a state estimation problem and is solved
using an unscented Kalman filter (UKF).

A motion-blurred image g can be related to the reference image f
through the space-variant point spread function (PSF) / as

+4oo  ptoo
g(x,y):/ fx—=s,y—t)h(x—s,y—t;s,t)dsdt (1)

For the case of in-plane camera translations, the PSF remains constant at
all the image points. However, when the camera motion is not restricted
to in-plane translations, the PSF can vary at every image point. We model
the motion-blurred image in terms of the reference image using a function
which we call as transformation spread function (TSF).

Let T denote the set of possible geometric transformations the image
points can undergo during the exposure. We define the transformation
spread function iy : T—R as a mapping from the set of transformations
to the set of nonnegative real numbers. hr (7)) denotes the fraction of the
exposure duration for the image transformation 7). The blurred image is
modeled as the weighted sum of the transformed reference images.

g= Y hr(Ty)fr, )
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where f7, denotes the reference image warped by the transformation T} .
Let i (i, j,;) denote the discrete PSF at the image point (i, j). Let (i3, j3)
denote the co-ordinates of the point when a transformation T), is applied
on (i,j). We can obtain the PSF at each pixel (i, j) from TSF (which is
common for all the image points) as

h(i,jsmn) = Y by (Ty) 84 (m—(i—ip),n—(i—jr) 3
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where &, denotes the 2D Kronecker delta function.

In scenes with depth variations, the extent of blurring at a point de-
pends both on the scene structure and the camera motion. Blur can serve
as a depth cue when there is a translational component in the camera mo-
tion. Suppose we know the reference TSF A7, (determined at depth d,),
the PSF at every point can be related to its depth value. The blurred image
g in terms of the reference image and the space-variant PSF is given by

g(l,j):Zf(l—m,j—n)l’l(l—m,]—}’l,m,ﬂ) (4)
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Initially, we determine the TSF A7, from a patch f, of the reference image
f and the corresponding patch g, of g using the proposed TSF estimation
technique. We consider it as the reference TSF and assume that its depth is
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Figure 1: (a) Reference image. (b) Blurred observation. (c) Estimated
TSF at tg = 3° and t; = 1 (d) Estimated depth map.
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d,. We estimate the relative depth k (i, j) = d (i, ) /d, at every (i, j) with
the knowledge of f, g and A7, by posing it as a recursive state estimation
problem [4]. The measurement model is

g(i,j) =Hij (k(i, /) +e(i,)) &)
where g (i, /) denotes blurred image pixels corresponding to all three chan-
nels and the nonlinear operator H; ; is in terms of f and hz,. At each
pixel (i, j), the state mean and covariance are predicted through the sys-
tem model. From these, the observation moments are obtained through
unscented transformations [2]. The Bayesian estimate of the state mean
is updated based on the observation through the UKF. The updated mean
is regarded as the relative depth & (i, j).

The reference image of the scene consisting of three objects at dif-
ferent depths is shown in Fig. 1 (a). In Fig. 1 (d), we observe that the
objects that are near the camera are correctly assigned a lesser relative
depth value than those that are farther.

In this paper, we have developed a technique to determine the im-
age transformations and extract depth information from motion-blurred
images. The camera motion was restricted to in-plane rotations and trans-
lations. However, the framework can be extended to allow out-of-plane
camera rotations.
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