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Abstract

We propose a method for vision-based scene understanding in urban traffic environ-
ments that predicts the appropriate behavior of a human driver in a given visual scene.
The method relies on a decomposition of the visual scene into its constituent objects by
image segmentation and uses segmentation-based features that represent both their iden-
tity and spatial properties. We show how the behavior prediction can be naturally formu-
lated as scene categorization problem and how ground truth behavior data for learning a
classifier can be automatically generated from any monocular video sequence recorded
from a moving vehicle, using structure from motion techniques. We evaluate our method
both quantitatively and qualitatively on the recently proposed CamVid dataset, predicting
the appropriate velocity and yaw rate of the car as well as their appropriate change for
both day and dusk sequences. In particular, we investigate the impact of the underlying
segmentation and the number of behavior classes on the quality of these predictions.

1 Introduction
Understanding complex visual scenes such as urban traffic environments is a challenging task
that humans are able to solve with the greatest of ease. As pedestrians, car drivers etc., they
convincingly demonstrate every day that this can be achieved largely on the basis of (stereo)
vision, without requiring additional information from laser scanners, infrared sensors, GPS
or map data of the environment. In this paper, we take the perspective of a human driver
and address the problem of vision-based scene understanding from video sequences that are
acquired by a car-mounted camera, monitoring the scene in front of the car while driving. In
particular, we are interested in predicting the appropriate driving behavior from the current
visual scene. Such capability is highly important for future driver assistance systems and
autonomous driving applications since it provides the car with expectations of what a human
driver would normally do in a given traffic situation. Depending on the application, these
expectations could be compared to the actual behavior of the human driver, communicating
a warning in case of significant deviation, or used directly to control the effectors of the car.
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Background. Due to the enormous complexity of unconstrained real-world traffic envi-
ronments, existing driver assistance systems restrict themselves to very specific tasks such
as lane keeping, collision avoidance, or automatic following, processing only very limited
subsets of information about the scene. Autonomous driving applications go beyond such
individual tasks and have already demonstrated impressive levels of performance and ro-
bustness, the DARPA Challenges [6, 7] being two prominent examples. However, the scene
understanding capabilities of such systems typically rely on extensive technical sensor se-
tups involving laser scanners, infrared sensors, radar sensors, GPS and annotated map data
of the environment, with vision playing only a subordinate role.

In contrast, we consider scene understanding based on visual information alone, without
the use of additional sensors or knowledge about the environment, and formulate the behav-
ior generation as scene categorization problem (Sec. 2). Early work on scene categorization
considered the scene as a whole [29, 30] or at the level of coarse sub-blocks [24, 27] and
enabled a basic distinction between a small number of well-distinguishable categories, based
on global or block-wise image statistics, respectively. In analogy to text documents, bag-of-
words approaches model images as histograms of local patch descriptors [19] and have been
successfully applied to scene categorization tasks involving up to 13 classes [10, 21]. Their
lack of representing spatial properties has been addressed by Lazebnik et al. [17] who pro-
posed a spatial pyramid representation, consisting of a hierarchy of bag-of-words represen-
tations over increasingly fine-grained image grids. Approaches considering object-centered
rather than grid-based spatial properties [20] overcome the implicit assumption of low vari-
ance in the spatial scene layouts but are computationally expensive. Drawing inspiration
from text document analysis and texture models, latent topic models such as pLSA [14] and
LDA [1] have been shown to improve the bag-of-words models by capturing co-occurrences
between codewords [2, 10, 22] and have evolved into complex generative models capable
of simultaneous scene categorization, segmentation and annotation [5, 18, 31]. In general,
however, scene categorization methods have focused on rather generic, domain-independent
categories, without direct application to traffic scene understanding or behavior prediction.

Discriminative methods for image segmentation, in contrast, have explicitly dealt with
traffic scene understanding, conditional random fields [16] being among the most popular
and successful [26, 28]. While traditional approaches have mainly focused on appearance-
based image features such as texture [25] and edge orientation histograms [8], Brostow et
al. [3] have recently shown that a reasonable segmentation can already be inferred from
sparse 3D features derived from noisy 3D point clouds. State-of-the-art methods [26] com-
bine both 3D and appearance-based features and also incorporate higher order potentials [15],
which exploit an unsupervised initial segmentation for more accurate object boundaries.
However, the segmentation problem has mostly been studied in isolation. Notable excep-
tions are Wang et al. [32] who consider segmentation and scene categorization in a common
framework, and Ess et al. [9] who use segmentation as a basis for road layout categoriza-
tion and object detection. We build on the work of the latter by employing the same set of
features (Sec. 4), but we use them to actually predict the appropriate driving behavior rather
than the upcoming road layout, which involves much more fine-grained categories.
Contributions. To summarize, our paper makes the following important contributions. (i)
We extend the approach of Ess et al. [9] to actual behavior prediction, both in terms of the
appropriate velocity and yaw rate of the car as well as their appropriate change (Sec. 2). (ii)
We provide detailed predictions of these quantities for both day and dusk sequences of the
recently proposed CamVid dataset [4], including an analysis of the impact of the underlying
segmentation and the number of behavior classes on the prediction quality (Sec. 5).
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(a) (b)
Figure 1: (a) Uncalibrated monocular image sequence, acquired by a car-mounted camera
while driving. (b) Corresponding behavior of the driver in terms of velocity and yaw rate of
the car, estimated using structure from motion techniques (Sec. 3). From these, our method
learns to predict the appropriate velocity and yaw rate of the car (as well as their appropriate
change) for previously unseen images. Note that (b) is automatically computed from (a), i.e.,
our method only requires an image sequence for learning the prediction.

2 Problem formulation

Given an uncalibrated monocular image sequence I = (i1, . . . , in) (Fig. 1a), it is well-known
that both the ego-motion of the camera and the 3D structure of the scene can be reconstructed
up to an unknown scale factor by structure from motion techniques [13]. While the 3D
structure of the scene has been shown to be useful for image segmentation, among others [3],
less attention has been paid to the ego-motion of the camera in this context. For image
sequences acquired by a car-mounted camera while driving, however, the ego-motion of the
camera largely corresponds to the motion of the car as a physical body, provided that the
camera is firmly mounted. In particular, it is possible to infer the velocity v ∈ [−1,1] and
yaw rate y ∈ [−1,1] of the car from the camera trajectory C = (c1, . . . ,cn) (Sec. 3). Note that
this is subject to the unknown scale factor as well, hence the normalization.

As a result, the camera trajectory has a corresponding trajectory B=((v1,y1), . . . ,(vn,yn))
in the 2D space spanned by velocity and yaw rate (Fig. 1b). In particular, for each camera
pose ck ∈ C we have the corresponding image ik ∈ I on the one hand and the velocity and
yaw rate (vk,yk) ∈ B of the car on the other hand. While ik largely depicts what the driver
currently sees, the pair (vk,yk) largely reflects what the driver currently does: Although we
cannot directly observe how the driver interacts with the steering wheel, throttle and brake
pedals, we know that this ultimately affects the velocity and yaw rate of the car, hence it is
sufficient for our purposes to observe (infer) only these. Clearly, the behavior of the driver
depends to a great extent on what he or she currently sees, i.e., the pair (vk,yk) has a visible
correlate in ik. Intuitive examples include braking because of a red traffic light or an obstacle,
or steering left because of a curve. Our goal is to learn such correlations from I and B, which
can be seen as examples of the appropriate behavior in different visual scenes provided by a
responsible driver, in order to be able to predict the appropriate behavior (v∗,y∗) ∈ [−1,1]2

for previously unseen images i∗ /∈ I. Note that inferring the appropriate behavior by structure
from motion techniques is only possible while learning, since only then an image sequence
is available that may justly be assumed to be provided by a responsible driver.
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(a) (b)
Figure 2: The behavior space is sub-divided into an arbitrary number of behavior categories
by symmetric thresholds (red), thereby inducing visual categories on the corresponding im-
ages (Fig. 1a). Examples of behavior categories for yaw rate: (a) Basic distinction between
“steering left”, “driving straight”, and “steering right”. (b) More fine-grained distinction
between “strongly left”, “slightly left”, “straight”, “slightly right”, and “strongly right”.

Scene categorization. In order to make the behavior prediction approachable, we formu-
late it as scene categorization problem. This is achieved by imposing a limited number of
well-defined thresholds on the behavior data B. More exactly, we consider velocity, yaw rate
and their respective changes independently from each other, thus predicting a 1D quantity
q ∈ [−1,1] each, and define symmetric thresholds −tp, . . . ,−t1, t1, . . . , tp ∈ [−1,1] on the do-
main of q (Fig. 2), thus sub-dividing B into behavior classes B0 = {(v,y) ∈ B|− t1 < q < t1},
Bt1 = {(v,y) ∈ B|t1 ≤ q < t2}, B−t1 = {(v,y) ∈ B|− t2 > q≥−t1} etc. We set the thresholds
such that the behavior classes are balanced, i.e., |B−tp |= · · ·= |Btp |. Since each (vk,yk) ∈ B
has a corresponding image ik ∈ I, these induce image classes I0 = {ik ∈ I|(vk,yk) ∈ B0},
It1 = {ik ∈ I|(vk,yk) ∈ Bt1}, I−t1 = {ik ∈ I|(vk,yk) ∈ B−t1} etc. By classifying a new image
i′ /∈ I as belonging to a certain I∗ based on its similarity to the i∈ I∗, the behavior represented
by B∗ is then taken to be the appropriate behavior for i′. In general, a high number of behav-
ior classes is desirable since it allows for a more fine-grained distinction of the appropriate
behavior in a given situation i′, however, this also increases the difficulty of the problem
because the classes become more similar. We investigate this dependency in Sec. 5.

3 Training data generation
The behavior data B corresponding to the image sequence I from which to learn the predic-
tion is inferred automatically from I by using standard structure from motion techniques [3,
4, 13]). For completeness, we briefly summarize the main steps involved, following [3].

First, keypoint detection using the Harris corner detector [12] is performed on the in-
dividual images i ∈ I, yielding a sparse set of 2D points per image. Next, correspondence
between keypoints of subsequent images is established by comparing local image patches
centered at the keypoints via Normalized Cross Correlation, resulting in short trajectories
of keypoints that correspond to the same 3D point in the scene. The coordinates of the 3D
points and the camera pose are then inferred by triangulation, assuming that the 3D points
are static. In the uncalibrated case, however, this 3D reconstruction is inherently ambiguous
and can only be achieved up to an unknown scale factor.
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(a) (b)
Figure 3: Most of the CamVid sequences [4] are split into independent batches. In order
to establish a common scale and avoid artifacts in the inferred behavior data, we align the
batches with each other by exploiting short overlaps. The alignment includes translation,
rotation and scaling of the individual batches. (a) Before alignment. (b) After alignment.
(Camera trajectories of different batches shown in different colors.)

Batch alignment. The global scale ambiguity implies that we can only infer the relative
velocity and yaw rate of the car rather than their absolute values. In addition, the 3D recon-
struction step often involves breaking down the sequence into independent batches (Fig. 3a),
which is also true for the CamVid dataset [4]. Before inferring the behavior data, we there-
fore perform a batch alignment in order to establish a common scale across the batches. We
exploit that the last L = (cb1 , . . . ,cbn) and the first F = (cp1 , . . . ,cpn) camera positions of
two subsequent batches b and p are overlapping. First, we compute the translation vector
t = gb− gp that shifts F to L, where gb and gp denote their respective centers of gravity,
and apply t to the entire batch p. Next, we compute direction vectors db = gb2 − gb1 and
dp = gp2 − gp1 of L and F , respectively, where gb1 ,gb2 and gp1 ,gp2 denote the centers of
gravity of the first and last half of L and F , respectively. We apply the rotation that turns dp
into db to the entire batch p. Last, we compute the scale factor s = ‖db‖/‖dp‖ that aligns the
spacing of the cp ∈ F to that of the cb ∈ L and apply it to p. The result is depicted in Fig. 3b.

The batch alignment serves to establish a common scale, which is sufficient for our pur-
poses, not to estimate the global scale of the scene. In practice, it works sufficiently reliable,
however, it implicitly requires that the overlap does not coincide with the car standing. Since
the third day sequence of the CamVid dataset (VD sequence) is affected by this issue, and
also because of the page limit, we chose to focus on the other three CamVid sequences, in-
cluding the dusk sequence. It is worth noting that a method for estimating the global scale
by exploiting non-holonomicity constraints has been recently proposed [23].

4 Segmentation-based features
Having inferred the behavior data B corresponding to the image sequence I from which to
learn the prediction, the actual learning uses segmentation-based image features, represent-
ing both identity and spatial properties of the objects in the scene. We use the same set of
features as recently proposed by Ess et al. [9], since these have already been shown to be
suitable for coarse road layout categorization, and investigate their suitability for actually
predicting the appropriate driving behavior, which involves more fine-grained classes. We
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(a) (b)
Figure 4: Behavior prediction is learned using features derived from a segmentation of the
image. (a) Example segmentation (CamVid ground truth), and (b) example showing the row,
column and 8x8 spatial layout features for cars. Such features are computed for each of the
12 object classes considered and form a large feature vector that represents the image.

did not include the periodicity features since these mainly serve to detect repetitive objects
like zebra crossings, for example, which is not our focus. For completeness, we briefly
summarize the features we use, following [9].

Given a segmentation s of an image i ∈ I that assigns an object class label s(u,v) ∈
{l1, . . . , ln} to each image pixel (Fig. 4a), we first compute n binary maps sl1 , . . . ,sln such that
sl∗(u,v) = 1 iff s(u,v) = l∗ (Fig. 4b, top left). Each of the sl∗ is then downsampled into an
8x8, 4x4, and 2x2 feature map sl∗ by subdividing sl∗ into the corresponding number of blocks
and computing the average pixel value for each block (Fig. 4b, bottom right). Intuitively, the
sl∗ represent the coarse spatial layout of objects in the scene. Similarly, we downsample
each of the sl∗ into an 80x60 map from which we then compute a row feature vector rl∗ and a
column feature vector cl∗ by averaging over its rows and columns, respectively (Fig. 4b, top
right and bottom left). Intuitively, the cl∗ are related to the yaw rate (avoiding obstacles) and
the rl∗ are related to the velocity (approaching objects). Finally, we combine the two binary
maps corresponding to lane markings and curbs by computing their pixel-wise maximum,
where curbs are defined as boundaries between road and sidewalk in s, and apply a gradient
operator (Sobel filter) to the combined map. The resulting gradient image is then subdivided
into 4x4 blocks and we compute an 18-bin edge orientation histogram per block. In the
end, the sl∗ , rl∗ , cl∗ and histograms are all serialized into one large feature vector of size
n(64+16+4)+n(60+80)+16 ·18 that represents the image i.

5 Results
We evaluate our method on the recently proposed CamVid dataset [4]. The CamVid dataset
consists of four video sequences that have been recorded by a car-mounted camera while
driving naturally in crowded urban traffic environments. The color images thus obtained
are available at a framerate of 30 Hz and have a resolution of 960x720 pixels. In addition,
each image is accompanied by a pre-computed set of 2D keypoints obtained by Harris cor-
ner detection [12] as well as the corresponding 3D point cloud and camera pose obtained by
structure-from-motion techniques. For every 30th image, a high-quality ground truth seg-
mentation is available that distinguishes between 32 object classes at pixel-level (Fig. 4a).
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(a) (b)
Figure 5: Behavior prediction results on TP sequence, using (a) CamVid segmentation and
(b) CRF segmentation. Baseline (black) corresponds to random guessing. (red: velocity,
green: yaw rate, blue: velocity change, yellow: yaw rate change)

Predicted quantity % correct (3 classes) % correct (5 classes) % correct (7 classes)
Velocity 85 % 88 % 85 % 73 % 62 % 56 %
Yaw rate 59 % 55 % 43 % 42 % 36 % 41 %
Velocity change 68 % 66 % 44 % 51 % 37 % 36 %
Yaw rate change 54 % 55 % 43 % 41 % 25 % 28 %
Baseline 33 % 20 % 14 %

Table 1: Behavior prediction results on TP sequence, corresponding to the graphs in Fig. 5.
All values obtained by 10-fold cross-validation. Performance of best classifiers shown.

Our evaluation considers 12 of these classes (buildings, cars, poles, lane markings, pedestri-
ans, road, sidewalks, signs, sky, trees, vegetation, and walls), matching those of [9].

The evaluation consists of two steps. In the first step, we use the CamVid ground truth
segmentation as a basis for our behavior prediction. This enables us to decouple the influ-
ence of the features on the quality of the predictions from the influence of the underlying
segmentation, thus providing insight into the quality of the features. At the same time, it
establishes an upper bound on the prediction quality, assuming an ideal segmentation. In the
second step, we relax this assumption and replace the CamVid ground truth segmentation
by a realistic segmentation, using a Conditional Random Field with unary and pairwise po-
tentials, based on color, edge, location and texton features [25]. Its overall accuracy on the
12 classes is about 65 %, which is lower than a state-of-the-art segmentation [26] due to the
lack of texton spatial layout and higher order potentials, but is trained in the same way. For
a lower bound on the prediction quality, uninformed random guessing serves as a baseline.

We consider each of the CamVid sequences separately (without the VD sequence, for the
reasons given at the end of Sec. 3) and predict the velocity, yaw rate, velocity change and
yaw rate change. To do so, we first compute ground truth behavior data for each of these
quantities, using the camera poses provided with the respective sequence as described in
Sec. 3. Since the CamVid ground truth segmentation is available for every 30th image only,
we compute the behavior ground truth data from the camera poses coresponding to these im-
ages, although the camera poses are available for every image. This avoids artifacts arising
from different sampling rates and, in practice, results in sufficiently accurate behavior trajec-
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(a) (b)
Figure 6: Behavior prediction results on R0 sequence, using (a) CamVid segmentation and
(b) CRF segmentation. Baseline (black) corresponds to random guessing.

Predicted quantity % correct (3 classes) % correct (5 classes) % correct (7 classes)
Velocity 95 % 93 % 71 % 68 % 58 % 56 %
Yaw rate 79 % 63 % 64 % 54 % 50 % 38 %
Velocity change 53 % 36 % 40 % 27 % 28 % 19 %
Yaw rate change 55 % 59 % 42 % 46 % 34 % 35 %
Baseline 33 % 20 % 14 %

Table 2: Behavior prediction results on R0 sequence, corresponding to the graphs in Fig. 6.
All values obtained by 10-fold cross-validation. Performance of best classifiers shown.

tories. Having computed the behavior ground truth data for each of the four quantities to be
predicted, we compute the segmentation-based feature vectors from the segmentation data
corresponding to these images as described in Sec. 4. Depending on whether we are in the
first or second part of the evaluation, we use either the CamVid ground truth segmentation or
the Conditional Random Field segmentation in this step. We then define a 3-, 5-, and 7-class
image categorization problem for each of the quantities to be predicted by quantizing the re-
spective continuous values of the behavior ground truth data into the corresponding number
of classes, as described in Sec. 2. For each of these categorization problems, we choose the
thresholds such that all classes are approximately equally probable, which ensures that the
baseline mentioned above is applicable. Finally, we learn a 3-, 5-, and 7-class classifier built
from one-versus-all classifiers. We use GentleBoost [11] with decision stumps as weak clas-
sifiers. For each (multi-)classifier, the optimal number of weak classifiers is determined by
10-fold cross-validation on the entire sequence, and the resulting classification performances
are reported: Table 1 and Fig. 5 show the results for the TP sequence (dusk), Table 2 and
Fig. 6 show the results for the R0 sequence (day), and Table 3 and Fig. 7 show the results for
the E5 sequence (day).
Discussion. As expected, the prediction quality on all sequences decreases as the num-
ber of behavior classes increases since the classes become more difficult to distinguish. In
general, the prediction quality for all quantities is consistently much higher than the base-
line. However, even when using the CamVid segmentation, the prediction quality remains
much lower than the theoretical optimum of 100%. One reason is that not all behavior of the
driver may have a visible correlate in the visual scene, but it also suggests that the represen-
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(a) (b)
Figure 7: Behavior prediction results on E5 sequence, using (a) CamVid segmentation and
(b) CRF segmentation. Baseline (black) corresponds to random guessing.

Predicted quantity % correct (3 classes) % correct (5 classes) % correct (7 classes)
Velocity 86 % 83 % 82 % 76 % 72 % 63 %
Yaw rate 61 % 57 % 51 % 45 % 40 % 35 %
Velocity change 62 % 61 % 51 % 46 % 40 % 36 %
Yaw rate change 53 % 52 % 36 % 40 % 33 % 30 %
Baseline 33 % 20 % 14 %

Table 3: Behavior prediction results on E5 sequence, corresponding to the graphs in Fig. 7.
All values obtained by 10-fold cross-validation. Performance of best classifiers shown.

tational power of the features is not yet sufficient. When using the CamVid segmentation,
the results are similar on all sequences. An exception is the yaw rate prediction on the R0
sequence (Fig. 6a), which is better than for the other sequences. We attribute this to the large
number of curves in the R0 sequence, providing more training data for the yaw rate. When
using the CRF segmentation, the results are also quite similar on all sequences, except for
the velocity change prediction on the R0 sequence (Fig. 6b), which almost drops to baseline
level. We attribute this to the fact that the R0 sequence is very different from the E5 and VD
sequence used for training, being less road-like and more crowded, and conclude that it was
hard for the velocity change prediction to generalize to the R0 sequence. Note that some
values are higher than for the CamVid segmentation, which should not be the case. We at-
tribute this to the variance when randomly choosing training and test sets despite the 10-fold
cross-validation and expect this effect to become less pronounced with a higher number of
folds. Overall, we observe that the difference between using the CamVid segmentation and
the realistic segmentation is much lower than expected.

6 Conclusion

Our experiments show that the segmentation-based features proposed by Ess et al. [9] are not
only suitable for scene classification with respect to rather coarse-grained categories such as
the upcoming road layout but also can be used to actually predict the appropriate driving be-
havior in terms of the velocity and yaw rate of the car and their appropriate change. Further,
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by comparing the predictions obtained when using an ideal segmentation to those obtained
when using a realistic segmentation, we were able to show that the prediction quality does
not so much depend on the quality of the underlying segmentation. We conclude that more
expressive features need to be sought rather than a more accurate segmentation as far as
behavior prediction is concerned.

Consequently, future work should concentrate on the feature space in order to improve
the performance, taking into account additional features such as 3D information and optical
flow, for example. Also, a more extensive evaluation on longer video sequences should be
conducted in order to estimate the performance in real-world applications.
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