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We propose a method for vision-based scene understanding in urban traf-
fic environments that predicts the appropriate behavior of a human driver
in a given visual scene. The method relies on a decomposition of the vi-
sual scene into its constituent objects by image segmentation and uses
segmentation-based features that represent both their identity and spa-
tial properties. We show how the behavior prediction can be formulated
as scene categorization problem and how ground truth behavior data for
learning a classifier can be automatically generated from any monocu-
lar video sequence recorded from a moving vehicle, using structure from
motion techniques. We evaluate our method on the recently proposed
CamVid dataset [1], predicting the appropriate velocity and yaw rate of
the car (and their appropriate change) for both day and dusk sequences. In
particular, we investigate the impact of the underlying segmentation and
the number of behavior classes on the quality of these predictions.

Given an uncalibrated monocular image sequence I = (i1, . . . , in) (see
Fig. 1a), both the ego-motion of the camera and the 3D structure of the
scene can be reconstructed by structure from motion techniques [4]. For
image sequences acquired by a car-mounted camera while driving, the
ego-motion of the camera largely corresponds to the motion of the car
itself, hence it is possible to infer the (normalized) velocity v∈ [−1,1] and
yaw rate y∈ [−1,1] of the car from the camera trajectory C = (c1, . . . ,cn).
As a result, the camera trajectory C has a corresponding trajectory B =
((v1,y1), . . . ,(vn,yn)) in the 2D space spanned by velocity and yaw rate
(Fig. 1b, blue), which largely reflects the behavior of the human driver.

Clearly, the behavior of the driver depends to a great extent on what
he or she currently sees, i.e., the pair (vk,yk) ∈ B has a visible correlate
in the corresponding image ik ∈ I. Our goal is to learn such correlations
from I and B, which can be seen as examples of the appropriate behavior
in different visual scenes provided by a responsible driver, in order to be
able to predict the appropriate behavior (v∗,y∗) ∈ [−1,1]2 for new im-
ages i∗ /∈ I. We formulate the behavior prediction as scene categorization
problem by considering velocity, yaw rate and their respective changes
independently from each other, thus predicting a 1D quantity q ∈ [−1,1]
each, and defining symmetric thresholds −tp, . . . ,−t1, t1, . . . , tp ∈ [−1,1]
on the domain of q (Fig. 1b, red). This subdivides B into behavior classes
B0 = {(v,y) ∈ B| − t1 < q < t1}, Bt1 = {(v,y) ∈ B|t1 ≤ q < t2}, B−t1 =
{(v,y) ∈ B|− t2 > q≥−t1} etc. Since each (vk,yk) ∈ B has a correspond-
ing image ik ∈ I, these induce image classes I0 = {ik ∈ I|(vk,yk) ∈ B0},
It1 = {ik ∈ I|(vk,yk) ∈ Bt1}, I−t1 = {ik ∈ I|(vk,yk) ∈ B−t1} etc. By classi-
fying a new image i′ /∈ I as belonging to a certain I∗, based on its similarity
to the i ∈ I∗, the behavior represented by B∗ is then taken to be the appro-
priate behavior for the situation depicted in i′.

Similarity between images is judged using the features proposed by
Ess et al. [2]. We did not include the periodicity features since these
mainly serve to detect repetitive objects, which is not our focus. Given a
segmentation s of image i ∈ I that assigns an object class label s(u,v) ∈
{l1, . . . , ln} to each pixel (Fig. 1c), we compute n binary maps sl1 , . . . ,sln
such that sl∗(u,v) = 1 iff s(u,v) = l∗ (Fig. 1d, top left). Each of the sl∗ is
downsampled into an 8x8, 4x4, and 2x2 feature map sl∗ by subdividing
sl∗ into the corresponding number of blocks and computing the average
pixel value per block (Fig. 1d, bottom right). Similarly, we downsample
each of the sl∗ into an 80x60 map from which we compute a row feature
vector rl∗ and a column feature vector cl∗ by averaging over its rows and
columns, respectively (Fig. 1d, top right and bottom left). Finally, we
combine the two binary maps corresponding to lane markings and curbs
by computing their pixel-wise maximum and apply a gradient operator
(Sobel filter). The resulting gradient image is subdivided into 4x4 blocks
and we compute an 18-bin edge orientation histogram per block. In the
end, the sl∗ , rl∗ , cl∗ and histograms are all serialized into one large feature
vector of size n(64+16+4)+n(60+80)+16 ·18 that represents i.

Figure 1: From an image sequence acquired by a car-mounted camera and
the corresponding behavior of the driver (top row), our method exploits
segmentation-based features (middle row) in order to learn to predict the
appropriate velocity and yaw rate of the car for new images (bottom row).

Our evaluation on the CamVid dataset [1] considers 12 different ob-
ject classes, matching those of [2], and consists of two steps. First, we use
the CamVid ground truth segmentation as a basis for our behavior predic-
tion (Fig. 1e). Second, we replace the ground truth segmentation by a real-
istic segmentation (Fig. 1f), using a Conditional Random Field with unary
and pairwise potentials that incorporates color, edge, location and texton
features. In both cases, we predict the velocity, yaw rate, velocity change
and yaw rate change, defining a 3-, 5-, and 7-class scene categorization
problem for each of these quantities by setting the appropriate thresholds
(Fig. 1b). We learn a 3-, 5-, and 7-class GentleBoost classifier [3] with
decision stumps on the feature vectors, built from one-versus-all classi-
fiers, and determine the optimal number of decision stumps by 10-fold
cross-validation on the individual CamVid sequences.

Our results indicate that the segmentation-based features [2] can be
used to directly predict the appropriate driving behavior and that perfor-
mance depends more on the features than on the segmentation quality.
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