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Abstract

This paper deals with generalized procrustes analysis. This is the problem of regis-
tering a set of shape data by finding a reference shape and global rigid transformations
given point correspondences. The transformed shape data must align with the reference
shape as best possible. This is a difficult problem. The classical approach computes
alternatively the reference shape, usually as the average of the transformed shapes, and
each transformation in turn.

We propose a stratified approach inspired by recent results obtained in Structure-
from-Motion. Our stratified approach offers a statistically grounded framework for ob-
taining both the transformations and the reference shape at once in two steps. First, we
compute a reference shape and affine transformations. Second, we upgrade these trans-
formations to the sought after similarity or euclidean transformations. In practice each of
these two steps involves solving a non-convex optimization problem. We provide convex
approximations and closed-form solutions.

As opposed to the classical alternation approach, our stratified approach processes
data in batch. It gracefully deals with missing data. We provide results on synthetic and
real data sets. Compared to the alternation schema, our algorithm obtains lower error in
both affine and euclidean cases, especially for shapes with high deformations.

1 Introduction
In many different problems, data analysis requires one to first compensate for a global trans-
formation between the different datasets of shape data. This is known as procrustes analysis
in the statistics and shape analysis literature [1, 3]. More precisely, it is called generalized
procrustes analysis when more than two shape data are to be registered. In this problem, one
global transformation per observed shape has to be computed, so that the shapes are mapped
to a common coordinate frame whereby they look as ‘similar’ as possible. This process is
called also rigid registration.

The global transformation is usually modeled by one of the groups of euclidean transfor-
mations ( 1

2 d(d + 1) degrees of freedom), similarity transformations ( 1
2 d(d + 1)+ 1 degrees

of freedom) and affine transformations (d(d +1) degrees of freedom), with d the dimension
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of the data to be analyzed. The classical approach to generalized procrustes analysis is to
select one of the shapes as a reference shape, and register each of the other shapes to the ref-
erence in turn by solving the absolute orientation problem. It is common to then alternate a
re-estimation of the reference shape, as the average of the registered shapes, with shape reg-
istration. We call this general paradigm the alternation approach to generalized procrustes
analysis. Both iterative [2] and algebraic closed-form solutions [5, 8] were proposed for
the absolute orientation problem. Integrated solutions based on the alternation approach for
multiple shapes have been recently proposed in [6, 9] with a total least squares step. As
discussed later in this paper, averaging the registered shapes might not be the best solution
to re-estimate the reference shape from a statistical standpoint.

We propose the stratified approach to generalized procrustes analysis. This approach
draws on recent results and practice from the Structure-from-Motion community [4], whereby
one estimates a so-called uncalibrated camera model and then upgrades or self-calibrates it.
Here, the uncalibrated model is the affine transformation group, and the calibrated model
is one of the similarity and euclidean transformation groups. Our stratified approach has
several advantages: it processes data in batch, as opposed to the alternation approach, it
gracefully deals with missing data thanks to the reference-space model we propose, and it
is statistically grounded as we demonstrate below. Our experimental results show that our
approach is very stable against high percentages of missing data, noise and deformations in
the shapes.

The paper is organized as follows. We state the problem and give mathematical prelim-
inaries and notation in §2. Our stratified approach is outlined in §3. The affine registration
step and the update to similarity-euclidean registration are respectively given in §3.1 and
§3.2. We report experimental results on simulated and real data in §4. We conclude in §5.

2 Problem Statement and Mathematical Preliminaries
We assume that there exist an unknown reference shape S>

def=
(
S1 · · · Sm

)
∈Rd×m, S j ∈

Rd , and unknown global transformations T
def= {T1, . . . ,Tn}, Ti : Rd → Rd , such that the

discrepancy between the model predicted shape points Ti(S j) ∈ Rd and the observed shape
points Di, j ∈ Rd follows a gaussian i.i.d distribution of unknown variance σ2. The model
likelihood is thus:

L (T ,S) def=
1

σd(2π)
d
2

n

∏
i=1

m

∏
j=1

exp
(
−

vi, j

2σ2 ‖Di, j−Ti(S j)‖2
2

)
, (1)

where ‖u‖2 =
√

u>u is the vector two-norm. Here we have omitted the conditional de-
pendencies on the observed shape points to leave the notation uncluttered. The variables
vi, j ∈ {0,1} allow us to model missing data, the fact that some points may not be observed
in some shapes. Our goal is to maximize the likelihood under a set of constraints C ensur-
ing that the solution is non-degenerate. These constraints may also fix some of the gauge
freedoms of the cost under the global transformation group being considered. It is straight-
forward to see that maximizing the likelihood L amounts to minimizing the negative log
likelihood, proportional to the data-space cost E , defined by:

E (T ,S) def=
n

∑
i=1

m

∑
j=1

vi, j ‖Di, j−Ti(S j)‖2
2. (2)
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The data-space cost is related to a generative modeling of the data, that we hereinafter call
the data-space model. It matches the definition of [10] of registration based on the notion
of average shape. The data-space cost is gauge invariant (i.e. the cost does not depend
on the coordinate frame in which the reference shape S and the transformations T are ex-
pressed) and it is nonlinear and non-convex (See figure 1 for a graphical representation).
Consequently, there does not exist a general closed-form solution to the maximum likeli-
hood problem for the data-space model. In the general case, one has to resort to iterative
nonlinear least squares optimization. This raises the problem of finding an initial solution
lying as close as possible to the global minimum of the data-space cost (2).

Reference

shape S

T1(S)

Tn(S)

D1

Dn

i.i.d. gaussian residuals

T1

Tn

Likelihood

estimation

Figure 1: The data-space model.

Transformations. A euclidean transformation TE is represented by a matrix E ∈ SO(d)
(the rotation) and a vector e ∈Rd (the translation). It is applied to a point S as S 7→ TE(S) def=
ES + e. A similarity transformation TS has the same representation with a scalar ζ > 0
(the scale factor). It is applied to a point S as S 7→ TS(S) def= ζ ES + e. Finally, an affine
transformation TA is represented by a matrix A ∈ Rd×d (the ‘rotational’ part) and a vector
a ∈ Rd (the translation). It is applied to a point S as:

S 7→ TA(S) def= AS+a. (3)

An affine transformation factors in a purely affine transformation and a euclidean transfor-
mation using QR decomposition of its rotational part A→QZ where Q∈O(d) and Z∈Rd×d

is an upper triangular matrix. If det(Q) =−1 switching the sign of the last column of Q and
of Zd,d ensures Q ∈ SO(d), i.e., to be a proper rotation matrix. In this decomposition, Z
represents the ‘purely affine’ part of the transformation and Q the euclidean part, leading to
TA(S) = QZS+a. Abusing notation, we use a letter such as T for the generic Rd→Rd trans-
formation function, and use the same letter for the transformation parameters over which a
minimization should be conducted. Sets of transformations are written using calligraphic
fonts such as T = {T1, . . . ,Tn}. For each type of registration, a minimum number of data
point correspondences per shape (in general configuration) is required. While these minimal
numbers can be analytically derived, we prefer to numerically check the conditioning of the
design matrices to ensure that (i) the minimal number of data points is reached and (ii) they
do not form a singular configuration.

3 The Stratified Approach
Our contribution in this paper is the definition of a stratified approach to generalized pro-
crustes analysis and a set of models and tools that implements it. This makes it possible
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to efficiently register multiple shapes, in any dimension and for the three aforementioned
transformations. Our framework has four main steps. The first two steps perform affine reg-
istration (initialization and nonlinear refinement, respectively), and are needed in all cases,
except registration without missing data that is dealt with matrix factorization. The last two
steps perform similarity-euclidean registration (initialization from the affine registration and
nonlinear refinement, respectively).

3.1 Affine Registration

We define A
def= {A1, . . . ,An} to be the set of unknown affine transformations. An affine

transformation Ai is represented as a pair Ai = (Ai;ai) ∈ Rd×d ×Rd . Substituting the affine
transformation model (3) into the general data-space cost (2) gives:

E (A ,S) =
n

∑
i=1

m

∑
j=1

vi, j ‖Di, j−AiS j−ai‖2
2. (4)

Finding a minimizer of this cost is what we aim at. A closed-form solution based on rank-d
factorization of a measurement matrix containing all the shape data exist only if all points are
observed in all shape data. We do not give the details of this solution. For the general case our
strategy is to get an initial (approximate) closed-form solution based on the reference-space
model that we propose and derive below.

3.1.1 Initial Solution

So as to approximate problem (4), we introduce the inverse Bi = (Bi;bi)
def= (A−1

i ;−A−1
i ai)

of the sought affine transformations (and the set B
def= {B1 . . . ,Bn}), and approximate the

data-space cost E by what we call the reference-space cost Ẽ :

E (A ,S) ≈ Ẽ (B,S) def=
n

∑
i=1

m

∑
j=1

vi, j ‖BiDi, j +bi−S j‖2
2. (5)

The major advantage of the reference-space cost is that it is a sum of squares linear in the
adjustable parameters, and thus leads to a linear least squares optimization problem. Even
though Ẽ is an approximation of E , it can also be interpreted as a negative log likelihood
under the hypothesis that the residuals are gaussian i.i.d. in the registered shape points. We
now set the optimization problem to be solved in the initialization step:

min
B,S

Ẽ (B,S) s.t. S>S = I(d×d) and S>1(m×1) = 0(d×1). (6)

The non-degeneracy constraint we choose here is S>S = I. It is necessary to prevent the
reference shape to collapse i.e., to avoid the trivial zero-cost solution S = 0 and A =
{(0;0), . . . ,(0;0)}. For pure convenience in our optimization algorithm, we choose to fix
the origin of the coordinate frame at the centroid of the reference shape using the constraint
S>1(m×1) = 0(d×1). We rewrite problem (6) as:

min
X̃∈Rp×d

‖KBB+KSS‖2
F s.t. S>S = I(d×d) and S>1(m×1) = 0(d×1), (7)
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where ‖U‖F
def=
√

tr(U>U) is the matrix Frobenius norm and KB and KS are:

KB
def=

KB,1
. . .

KB,n

 ∈ Rα×n(d+1) and KS
def=

KS,1
...

KS,n

 ∈ Rα×m, (8)

with:

KB,i
def=

Di,1 1
...

...
Di,m 1

 ∈ Rβi×d+1 and KS,i
def= −

1
. . .

1

 ∈ Rβi×m. (9)

Only the ‘rows’ for which vi, j = 1 are instanciated in KB,i and KS,i. It should be noted that
both matrices KB and KS are very sparse. Temporarily fixing S, we get the minimizer for
B as B? def= −K†

BKSS. Thanks to the structure of matrix KB, the pseudo-inverse K†
B can be

computed very efficiently. Substituting B? in the problem formulation (7), we get:

min
S∈Rm×d

‖−KBK†
BKSS+KSS‖2

F s.t. S>S = I(d×d) and S>1(m×1) = 0(d×1). (10)

Matrix K̂B
def= KBK†

B is called the hat matrix. It allows us to rewrite the problem as:

min
S∈Rm×d

‖(I− K̂B)KSS‖2
F s.t. S>S = I(d×d) and S>1(m×1) = 0(d×1). (11)

The reference-space cost is invariant to similarity transformations. Therefore, the position
constraint S>1 = 0 can be simply enforced by adding it to the cost, giving the problem:

min
S∈Rm×d

‖LS‖2
F s.t. S>S = I(d×d) with L

def=
(

(I− K̂B)KS
1>

)
∈ Rα+1×m. (12)

One could now find the constrained minimizer S? using a simple SVD (Singular Value De-
composition) of matrix L. However, We propose a solution that goes deeper into exploiting
the problem structure using regular full matrices. We first note that the right singular vectors
of L and of W

def= L>L are identical. We thus rewrite the problem as:

min
S∈Rm×d

‖WS‖2
F s.t. S>S = I(d×d) with W

def= L>L ∈ Rm×m. (13)

The complexity thus depends on the number of model points m but not on the number of
shape data n. Matrix K̂B can be formed block-wise since KB = diag(KB,i) implies K̂B =
diag

(
K̂B,i

)
. The complexity of computing K̂B is thus proportional to the inversion of the

symmetric matrices K>B,iKB,i ∈ Rd+1×d+1. Matrix W ∈ Rm×m is then given by W = 11>+

∑
n
i=1 K>S,i(I− K̂B,i)KS,i since

(
K̂B,i− I

)> (
K̂B,i− I

)
= I− K̂B,i. Given that matrix KS,i just

insert rows and columns of zeros a very efficient algorithm can be implemented to compute
W. The solution S? from (13) is simply obtained as the last d columns of the matrix V from
the SVD W

SVD→ UΣV>.
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3.1.2 Iterative Refinement

Given the initial suboptimal but closed-form solution in the reference-space, we propose
to make iterative refinements through nonlinear least squares algorithms such as Gauss-
Newton, Levenberg-Marquardt and other variants. Two main issues arise at this point.

First it must be noticed that the problem has a very sparse representation. The residuals
in the cost function (4), for those points on shape i depend only on the i-th transformation
Ai = (Ai;ai), and not on the others. Similarly, the residuals for the instances of point j over
the shape data depend only on the j-th reference shape point S j. Therefore, the cost Jacobian
used in a Gauss-Newton algorithm has a strong block structure that allows one to solve the
normal equations in a highly efficient manner. Since this is a very standard technique, we
shall not describe it in details. The interested reader can refer to [4], for instance.

The second issue to deal with is the gauge freedoms of the data-space cost. There is
a d(d + 1)-dimensional linear subspace of equivalent solutions. The normal equations de-
rived from the Gauss-Newton method are equally affected. The damping strategy in the
Levenberg-Marquardt algorithm gracefully deals with this kind of gauge freedoms.

3.2 Similarity-Euclidean Registration
In this section we deal with the problem of initializing a similarity or a euclidean registration
from an affine registration Ai = (Ai;ai), i = 1, . . . ,n. In the euclidean case, this requires one
to find the registration Ei = (Ei,ei) such that Ei ∈ SO(3), i = 1, . . . ,n. A trivial solution that
comes to mind is to find each Ei by projecting Ai to the Stiefel manifold of orthonormal
matrices. This however cannot be done as directly. Indeed, one has to take into account the
nature of the gauge.

In the data-space model framework, the affine registration we compute is up to an un-
known global affine transformation G = (G;g). The rotational part of this affine transforma-
tion factors in the product of a euclidean Q and a purely affine transformation Z: G = QZ.
The upgrading transformation is represented by Z. The projection to Stiefel manifold must
take place after upgrading.

3.2.1 Computing the Upgrading Transform

What we know is that there exist an upgrading transform Z and orthonormal transformations
Qi such that:

Di, j ≈ QiZS j +ai. (14)

Let X ∈Rnd×m be the centred measurement matrix, with entries Di, j−ai.1 We may rewrite
the previous equation in matrix form as:

X ≈ QZS> with X
def=

D1,1−a1 · · · D1,m−a1
...

. . .
...

Dn,1−an · · · Dn,m−an

 and Q
def=

Q1
...

Qn

 .

(15)
Given that S is column-orthonormal, S>S = I. We multiply each side of the equation to the
right by S and get:

X S ≈ QZ. (16)
1Missing data points (for which vi, j = 0) are simply approximated by their prediction by the affine registration

Di, j ≈ AiS j +ai.
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Since Q is made of orthonormal matrices, we have that Q>Q = nI. Multiplying each side
of the equation to the left by its transpose gives:

S>X >X S ≈ nZ>Z = Y, (17)

from which we obtain Y that is guaranteed to be SPD (Symmetric Positive Definite). Cholesky
factorization is used to recover an upper triangular Z.

In the scaled-euclidean case, Q is made of scaled orthonormal matrices, and therefore
Q>Q = γI for some γ ∈ R, γ > 0. As above, multiplying each side of the equation to the
left by its transpose gives:

S>X >X S ≈ γZ>Z = γY, (18)

Again, since γ > 0, the recovered matrix is guaranteed to be SPD. Matrix Z can only be
recovered up to scale, which is not important since it corresponds to the ambiguous global
scale.

Given that we have computed the upgrading transformation Z, we now sought orthonor-
mal transformations Ei close to Ẽi

def= AiZ
−1. We propose to find Ei ∈ SO(d) such that

‖Ei− Ẽi‖2
F →min. The solution is given from the SVD Ẽi

SVD→ UΣV>: we get Ei← UV> in
the euclidean case and Ei← 1

d

(
∑

d
k=1 σk

)
UV> in the scaled-euclidean case, where the σk are

the singular values in Σ.

3.2.2 Iterative Refinement

The iterative refinement in this case is similar to the affine case. The difference lies in the up-
date rule and the parameterization of the transformations being used. We use a non-singular
redundent global parameterization for rotations that we update via a singular but locally well-
behaved minimal parameterization. We represent a rotation by a matrix in SO(d) (redundent
global parameterization with d2 parameters), that is locally updated by an angle-based pa-
rameterization with the minimal d(d−1)

2 parameters, corresponding to the exponential map.
Define R(θ) the function that maps the d(d−1)

2 vector θ to the corresponding rotation matrix.
We use the update rule Ei ← EiR(θ i) and perform optimization over θ i around 0 at each
iteration since R(0) = I(d×d).

4 Experimental Results

4.1 Simulated Data
The following methods are compared. AFF-FCT: affine factorization (complete datasets
only) based on rank-d factorization of the measurement matrix. AFF-REF: the proposed
closed-form affine registration using the reference-space method. AFF-ALL: the whole pro-
posed affine registration part including iterative refinement. AFF-F+A: the whole affine
registration method with AFF-FCT used as initialization. EUC-UPG: affine registration with
euclidean upgrading. EUC-ALL: the whole proposed euclidean registration. ALT: the fol-
lowing version of the alternation algorithm is considered: first, the reference shape is ob-
tained as the mean of the transformed data-shapes, using the inverse of the transformations
obtained in the last iteration. Second, we find the set of transformations that minimize the
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data-space cost between the reference shape and the data-shapes in turn, using the closed-
form solution of [5]. The algorithm stops when the reference shape does not change between
alternations.

Data generation. The reference shape is generated by drawing m = 50 points in an origin-
centred hyper-sphere of unit radius in dimension d = 3. Each of the n = 5 affine transforma-
tions is randomly generated by selecting d +1 control points into the unit hypersphere. The
euclidean transformations are generated as the orthonormal part of the QR factorization of
the above affine transformations and ensuring positiveness of the determinant. The generated
shapes are obtained by applying the n transformations to the m reference points. Non-rigidity
and noise are both modeled by an additive gaussian process with variance σ2 = 0.01. Miss-
ing data are obtained by erasing points with τ = 0.5 (50% missing data).

Experiments. We use as quality criterion the data-space cost. Each experiment is run
with 100 trials and we report RMS values. The ranges are the following: σ2 = 0 . . .1 ;
n = 2, . . . ,50 ; m = 10, . . . ,1000 ; d = 1, . . . ,10 ; τ = 0 . . . .9.

Experiment 1: affine transformation, full-data (τ = 0); varying σ2, n, m and d
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Experiment 2: affine transformations, varying σ2, n, m, d and τ
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Experiment 3: euclidean transformations, varying σ2, n, m, d and τ
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Experiment 4: euclidean transformations with high deformations, varying σ2 = 0...20 and d = 2,3
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Figure 2: Experimental results (see main text for details).

The results clearly show that AFF-REF is suboptimal compared to the maximum like-
lihood solution offered by the other methods. However it is very useful to initialize the
iterative refinement AFF-ALL in case of missing data. In the context of (scaled-)euclidean
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registration it can be clearly seen that EUC-UPG is prone to errors and needs the iterative
refinement performed by EUC-ALL. Much of this error is caused by the use AFF-REF for
the affine solution that is being upgraded.

Overall, our methods are very efficient and resistant to various pertubation (extreme noise
and amounts of missing data). The best combination is clearly the reference-space affine
closed-form solution, followed by data-space affine nonlinear refinement, (scaled-)euclidean
upgrading and nonlinear refinement. Our results show that avoiding the affine nonlinear
refinement may strongly harm the result of (scaled-)euclidean upgrading. With high defor-
mations, the EUC-ALL and AFF-REF performs better than the alternation algorithm in terms
of data-space error.

4.2 Real Data
We tried our algorithms on two real datasets. The first dataset contains n = 10 2D shapes
with m = 40 2D points that represent a human face with different poses in front of a camera.
This dataset includes missing data (τ ≈ 0.1) when the face turns, as it suffers from self-
occlusion. The second dataset corresponds to 3D point coordinates given by Motion Capture
(MOCAP) sensors, available from the HumanEVA [7] database. The dataset has n = 7 shapes
corresponding from a walking person.

Face dataset
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Dataset RMS AFF-ALL RMS EUC-ALL RMS ALT
Face 13.2 px 13.9 px 14.1 px

Human Eva 77.48 mm 93.83 mm 105.43 mm

Figure 3: Visual comparison showing the shapes from the datasets and the corresponding
predicted shapes after registration given by Ti(S). The table gives the data-space registration
error.

As can be seen from the results in figure 3, AFF-ALL reaches a lower data-space error
than EUC-ALL or ALT, which was expected since the affine transformations have more
flexility than the scaled-euclidean ones. For both types of transformations, however, we get
convincing results. It can be seen that EUC-ALL reaches lower error in the data-space than
the alternation algorithm in both datasets.
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5 Conclusion
This paper presented a stratified approach to the generalized procrustes analysis problem for
rigid registrations. It is similar in spirit to the stratified Structure-from-Motion paradigm,
but brings specific methods well adapted to registration in arbitrary dimensional spaces. The
proposed framework first solves the problem for the affine transformation group, for which
a closed-form solution and an iterative method were developed. Similarity or euclidean
transformations are then obtained through an upgrade of the affine solution. We show that
the solution in the so-called data-space corresponds to the maximum likelihood estimate
assuming i.i.d. gaussian noise in the measured shape points. The paper gives insights about
how to exploit the problem sparsity and proposes algorithms to efficiently solve each step.

At this point, we emphasize that our stratified approach to generalized procrustes analysis
provides a novel handle in that problem, which is generally solved by alternation algorithms.
Experimental results showed that our stratified approach is very accurate and stable with
respect to various factors such as data noise and missing data, while being able to gracefully
handle missing data. Further experiments assessing in particular the computational runtime
and comparison with various alternation-based methods on extensive datasets are however
required. They will be provided in an extended version of the paper.
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