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In many different problems, data analysis requires one to first com-
pensate for a global transformation between the different datasets of shape
data. This is known as procrustes analysis in the statistics and shape anal-
ysis literature [1, 3]. More precisely, it is called generalized procrustes
analysis when more than two shape data are to be registered. In this prob-
lem, one global transformation per observed shape has to be computed, so
that the shapes are mapped to a common coordinate frame whereby they
look as ‘similar’ as possible. This process is called also rigid registration.

The classical approach to generalized procrustes analysis is to select
one of the shapes as a reference shape, and register each of the other
shapes to the reference in turn by solving the absolute orientation prob-
lem. It is common to then alternate a re-estimation of the reference shape,
as the average of the registered shapes, with shape registration. We call
this general paradigm the alternation approach to generalized procrustes
analysis. Both iterative [2] and algebraic closed-form solutions [4] were
proposed for the absolute orientation problem. Integrated solutions based
on the alternation approach for multiple shapes have been recently pro-
posed in [5, 6] with a total least squares step.

We propose a stratified approach inspired by recent results obtained
in Structure-from-Motion. Our stratified approach offers a statistically
grounded framework for obtaining both the transformations and the refer-
ence shape at once in two steps. First, we compute a reference shape and
affine transformations. Second, we upgrade these transformations to the
sought after similarity or euclidean transformations. In practice each of
these two steps involves solving a non-convex optimization problem. We
provide convex approximations and closed-form solutions.

As opposed to the classical alternation approach, our stratified ap-
proach processes data in batch. It gracefully deals with missing data.

We assume that there exist an unknown reference shape S> ∈ Rd×m,

S j ∈ Rd , and unknown global transformations T
def= {T1, . . . ,Tn}, Ti :

Rd → Rd , such that the discrepancy between the model predicted shape
points Ti(S j) ∈ Rd and the observed shape points Di, j ∈ Rd follows a
gaussian i.i.d distribution of unknown variance σ2. Maximizing the like-
lihood of the difference between the shapes Di and the transformed ref-
erence shape Ti(S j) amounts to minimizing the negative log likelihood,
proportional to the data-space cost E , defined by:

E (T ,S) def=
n

∑
i=1

m

∑
j=1

vi, j ‖Di, j−Ti(S j)‖2
2. (1)

The variables vi, j ∈ {0,1} allow us to model missing data. The data-space
cost is related to a generative modeling of the data, that we hereinafter call
the data-space model. It matches the definition of [7] of registration based
on the notion of average shape and it is gauge invariant (See figure 1 for
a graphical representation).

Our framework has four main steps. The first two steps perform affine
registration (initialization and nonlinear refinement, respectively), and are
needed in all cases, except registration without missing data that is dealt
with matrix factorization. The last two steps perform similarity-euclidean
registration (initialization from the affine registration and nonlinear re-
finement, respectively).

We define A
def= {A1, . . . ,An} to be the set of unknown affine trans-

formations. Substituting the affine transformation model into the general
data-space cost (1) gives:

E (A ,S) =
n

∑
i=1

m

∑
j=1

vi, j ‖Di, j−AiS j−ai‖2
2. (2)

Due to the non-convex nature of the data-space cost, for the general case
our strategy is to get an initial (approximate) closed-form solution based
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Figure 1: The data-space model.

on the following reference-space model. The data-space cost E by what
we call the reference-space cost Ẽ :

E (A ,S) ≈ Ẽ (B,S) def=
n

∑
i=1

m

∑
j=1

vi, j ‖BiDi, j +bi−S j‖2
2. (3)

where we use the inverse Bi =(Bi;bi)
def= (A−1

i ;−A−1
i ai) of the sought

affine transformations. The major advantage of the reference-space cost
is that it is a sum of squares linear in the adjustable parameters, and thus
leads to a linear least squares optimization problem. Given the initial sub-
optimal but closed-form solution in the reference-space, we propose to
make iterative refinements through efficient nonlinear least squares algo-
rithms such as Gauss-Newton, Levenberg-Marquardt and other variants

After computing the set of affine transformations Ai = (Ai;ai), i =
1, . . . ,n a set of similarity/euclidean transformations are computed. In the
data-space model framework, the affine registration we compute is up to
an unknown global affine transformation G = (G;g). The rotational part
of this affine transformation factors in the product of a euclidean Q and a
purely affine transformation Z: G = QZ. The upgrading transformation
is represented by Z. The projection to Stiefel manifold must take place
after upgrading. After the upgrading the iterative refinement is similar to
the affine case.

Overall, our methods are very efficient and resistant to various pertu-
bation (extreme noise and amounts of missing data). We provide results
on synthetic and real data sets. Compared to the alternation schema, our
algorithm obtains lower error in both affine and euclidean cases, espe-
cially for shapes with high deformations.
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