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Abstract

In this paper, we present an approach to recover both spatially and temporally con-
sistent depth maps from multiview synchronized and calibrated video streams. Depth
maps are initialized by combining left-right view matching and color based segmenta-
tion. Then the color constancy and spatial coherence are integrated into the optimization
framework in order to guarantee the spatial consistency at single time instant. Finally,
we incorporate the depth and motion information in the form of spatial-temporal con-
sistency constraint to refine and stabilize the depth video, without ruining the original
spatial consistency in the estimation of each single instant. The experiments on differ-
ent multiview sequences demonstrate the effectiveness of our method in providing both
stable and accurate multiview depth estimation.

1 Introduction

As a fundamental problem in computer vision, stereo matching [5] has been an active re-
search topic for many decades, facilitating applications such as 3D modeling, video editing,
view synthesis and interpolation. Many methods have been proposed to estimate high qual-
ity depth maps, among which such as belief propagation (BP) [17, 19, 21]and Graph-Cuts
[12] have demonstrated their advantages on achieving global optimization. To handle the
challenging problem of textureless regions, segmentation-based approaches are applied with
the assumption that areas of homogeneous color have smooth depth [1, 15, 20, 26]. Another
major challenge of stereo matching is the occlusion problem, which is also investigated in
many works [11, 20, 24]. They explicitly consider occlusion detection in their framework
and are able to reduce artifacts at depth boundaries. Previous methods can be generally clas-
sified into two categories: recovering depth for the static scene and for the dynamic scene.
To extract static depth map from just one time instant, some research enforces the spa-
tial consistency by combining depth maps of several views [8, 23]. Kang and Szeliki [23]
simultaneously optimize a set of self-consistent depth maps at multiple key-views by adding
a compatibility constraint to them. Zhang et al. [8] incorporate geometric coherence associ-
ating multiple views into photo-consistency constraint, and handle image noise, occlusions
and outliers with a unified bundle optimization framework. Their recovered disparity maps
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can maintain the spatial coherence without over smoothing. However, the accuracy relies on
the number of views and degree of satisfaction in disparity initialization.

When estimating dynamic depth maps from multiview video, these methods can only
perform depth estimation frame-independently, without considering the temporal consis-
tency between adjacent frames. As a result, the generated depth video will appear obvious
inconsistent and flickering. Some other research shows the improvement by incorporating
temporal coherence constraint into their optimization model [6, 7, 9, 14].

Tao et al. [9] propose a method based on image segmentation which models each seg-
ment as a 3D planar surface patch. Temporal correspondences between segments of adjacent
frames are determined with optical flow. Then parameters of the planar patch are estimated
using initial spatial homography and temporal homography. Sharp depth boundaries are
preserved by taking advantage of segmentation and plane fitting.

In Gong’s approach [14], the concept of disparity flow is used to model the 3D motion
in the scene, which can also be considered view-dependent scene flow [22]. The disparity
flow is used to predict the disparity maps of the next frame by cost adjustment with pre-
dicted values. To achieve real-time performance, they only use local WTA optimization in
computation.

Scene flow is also used in Liu and Philomin’s work [7] as a soft constraint to predict
disparity map and to compute confidence map of the next frame. Over-segmentation based
stereo and pixel-wise iterative stereo are applied first to initialize the disparity. Their method
is able to estimate accurate and temporally consistent disparity maps with only two image
streams. Nevertheless, there still exists some error propagation in disparity maps.

Larsen et al. [6] present an approach for temporally consistent depth reconstruction
based on enhanced BP framework which extends traditional 4-neighborhood 2D image lat-
tice to 6-neighborhood 3D lattice. Even when optical flow fails in finding corresponding
pixels in adjacent frames, their algorithm can at least maintain the quality of single time
reconstruction.

In this paper, a method to estimate spatio-temporally consistent depth maps from mul-
tiview video streams is presented. Our method is inspired by Zhang’s approach [8] which
can recover high quality spatially consistent depth maps of static scene from multiple im-
ages. The segmentation-based disparity initialization and integration of geometry coherence
constraint and photo-consistency constraint by bundle optimization are adopted in our frame-
work, but considering videos with sparse views in which occlusion problem cannot be well
handled by temporal selection [23], the initialization step applies left-right view matching
(picking matching point from left or right view) instead. Besides, second-round segmen-
tation which follows spatial consistence bundle optimization is used to remove the outliers
introduced by left-right view matching and make the parameters in plane fitting more precise.
Furthermore, optical flow and disparity maps of adjacent frames are combined to enforce the
spacial-temporal consistency in target energy function, which is also optimized by bundle
optimization to achieve more accurate and stable depth video.

2 Motivation

Our work is inspired by the observation that the state-of-the-art stereo methods would appear
jittering when dealing with dynamic scenes. Although some recent literature [6, 7, 9, 14]
report their results on maintaining smooth video without the jitter artifacts, the reconstructed
depth maps still remain much to be improved. We first borrow the idea of geometry consis-
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tence from [8] ’s work to ensure the spatial consistency at each time instant. Then, temporal
information is integrated into a unified bundle optimization framework to compute the multi-
view depth maps. The consideration of temporal information brings not only the stabilization
on time axis, but also can be used to refine the inaccurate depth estimation by each single
time instance. In the following sections, we will detail in how to incorporate both spatial and
temporal consistency into the target function and demonstrate the results of our method on
various multiview datasets.

The rest of this paper is organized as follows. In section 3, we explain the algorithm
of spatio-temporally consistent depth maps estimation. In section 4, experimental results of
several multiview videos are shown to demonstrate the effectiveness of our method. Finally
we give the conclusions in section 5.

3 Proposed Approach

In this section, we describe in detail the framework of the proposed approach and the energy
function constructed based on the Markov Random Field (MRF), which is optimized by
loopy BP.

Given a multiview video sequence I with N views, and T frames for each view (I =
-, T;n=1,--- N} ), and the camera parameter set of view n (P, = {K,,,R,, T, }),
our goal is to estimate the depth maps Z (Z = {Z; ,Jt =1,--- ,T;n=1,--- ,N}).

Let I; »(x) and Z; ,(x) (also written as I(x; ,) and Z(x; »)) be the color and depth of pixel
x in view n at time 7 ((#,n) for short), and here we use disparity D; ,,(x) = D(x;») = 1/Z; 5 (x)
instead. Then the global energy function composed of the data term E; and smoothness term
E; is defined as (1):

N
E(D;I) = Z E4( Dtn,l D\Dtn)+E (Df")) (1

\\Me

where D is set of D, ,, and D\D; , means all the disparity maps excluding D; ,,. So the data
term gives the conditional probability of D, , given I and D\D; .

For each step, we use unified form of E; to measure the fitness of multiview disparitiy
maps D to sequence [ and refine the disparity maps reconstructed in previous step. Besides,
we apply one single E form to ensure the smoothness on disparities of neighboring pixels.

3.1 Disparity Initialization

This step generates initial disparity maps of time ¢ via loopy BP and segmentation based
plane fitting.

Considering sequences with sparse views, especially when region of pixels are visible
only in another one or two views, we use left and right views to generate the disparity of
centre view instead of temporal selection [23], under the assumption that each pixel is visible
in at least one neighbor view.

We quantize the disparity range [Din, Dinax] into L+ 1 levels, and denote x; | (X;.n, D(x;,1))
(x;,v for short) as the mapping pixel in (7,n’) from pixel x; , with disparity level D(x; ),
which is computed by (2):

X 2Ky R R K Fon + D (0K R (T — T, ), 2)
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where ¥ means the homogeneous coordinates of x, and =2 means equal up to a scale factor.
The likelihood of disparity D(x; ) for pixel x; , is defined as (3):

Linitial (xt,na D(xt,n)) = max{pc (xt,rnD(xt,n)all,nvlt,nfl )7 pc(xl,nvD(xt,n)alt,na Il,n+l )}7 (3)

where p. (xm,D(xt,n),lw,l,’n/) is defined as (4) to measure the color similarity between x; ,

and x;
Oc¢

Pe(Xen, D(xtn), Ien by ) = ; “
c\At.n t.n)ydtns Lt n O-C+H](xt,n)_l(xz7n')H2
where o, is a constant to control the shape of color similarity function.
Then we have the data term E; as (5):
Ed(Dt,n;IzD\Dt,n) :Z(l —M( ) meul(x nvD(xt,n)))a (5)

Xt.n

where u(x;,) = 1/maxpyy, ) L™ (x; ,,D(x;,)) is a normalization factor. For smoothness
term E, we simply define it as (6):

Dtn Z Z a)'l(xt,nvyt,n)'min{|D(xt,n)7D(yt,n)|7n}a (6)

Xt,n vy, nGN(xt,n>

where N(x;,,) denotes the set of neighbor pixels of x; ,, and @ is the smoothness strength
constant. 11 determines the upper limit of contribution of disparity difference. The smooth-
ness weight A (x; ,,,ys») is defined as (7) to preserve disparity discontinuity at color outliers:

€
&+ 11 (xen) = 1)y’

where constant € controls the color sensitivity of smoothness term.

As we know, color information of only two neighbor views is not enough to handle the
textureless regions and occlusions, so we employ the mean-shift color segmentation [4] and
plane fitting to handle the textureless regions. Each segment Sy is modeled as a 3D plane and
the disparity of x; ,,(x; » = [x,y]€Sk) is denoted as D(x; ,) = agx + by + c. After that, the
plane fitting method proposed by Zhang et al. [8] is adopted to compute the plane parameters
(ag, by, cr). They first fix ar = by = 0 in Sy and the disparity values in other segments. Then a
set of ¢; which equal to L+ 1 disparity levels are used to compute a best ¢ by minimize the
energy function (1). After that, initial plane parameters (0,0, c;) are further refined by again
minimizing (1) using Levenberg-Marquardt method, getting final result (a;,b;,cj). Plane
parameters of other segments are computed in the same way one by one.

A(-xt,nayt,n) = @)

3.2 Spatial consistency

After the initialization of disparity, there still exist many outliers because of inaccurate plane
parameters and the disturbance of similar-color pixels with different disparities. Meanwhile
the disparity map of each view is estimated independently without considering their spatial
correlation. So we incorporate spatial coherence constraint into the color constancy con-
straint to refine spatial errors and ensure the spatial consistency.

As shown in figure 1, by epipolar geometry, x; ,» in (¢,n’) is the projection of x,,, with
D(x;,) in (t,n), and the initial disparity of it is D(x; ). X is the corresponding 3D point.
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Figure 1: Spatial coherence constrain. The mapping pixel of x; , is x; 7, which lies on the
conjugate epipolar line. Its ideal disparity is D*(x; ), with which x; will map to a same 3D
point as x; , with D(x; ,). But the initial disparity of x, ,» is D(x; /), so we use the difference
between D(x, ) and D*(x, /) to measure the spatial coherence. At the same time, we take
those pixels between x, ,» and xzn, into consideration to handle large baseline problem.

Ideally, we have XP(wn) — XP ) but inaccurate initial disparity maps induce the de-
viation (marked as red line segment). Zhang et al. [8] propose the geometric coherence
term to measure the deviation, but for large baseline, the difference of mapping coordinates
Hx;n, — X ||2 (Where x;n, is short form of x; ,|(x; n, D(x;,,) + 1)) results from neighbor dis-
parity level will be larger than small baseline.

So we define the spatial coherence constraint (8) as a Gaussian distribution of the dif-
ference between D(x, ) and its’ ideal disparity D*(x; /) (disparity level corresponding to
depth of XPGin) from C; v» which can be computed with (11) as an instance of cross-line).
We also take into account the pixels (marked as red point, whose set is noted as /(x; ,/)) be-

tween x; » and xj » on the conjugate epipolar line. Spatial coherence constraint of x; , with
other disparity levels such as D(x; ,) + 1 is defined in the same way.

2
ps(xt,nyD(xt.n)7Dt,n’) =  max exp (_ (D(xf n/) -D* (xf n’)) /263) ®)
) ) ;

!
xl_n,el(x,‘n/

Furthermore, in order not to extend the wrong disparity in occlusions to subsequent dis-
parity maps, the occlusions detected by initial disparity are taken into consideration, so the
likelihood (3) is modified to (9):

N N /
L(xt0,D(x1.0)) = — =Y, (1=00 (x60)) - Pe- sy ©)
¢’ /_
L1017
n'#n

where 022/ (xtn) = 1,if x; , is occluded in (¢,7), else OﬁjZl (x:.,n) = 0. We first map each point
X, in (t,n) to (t,n') with corresponding disparity D(x,,), and order the points those map
to a same x,; 7 by considering their disparities. The points with larger disparity value are
considered to be disoccluded, and others will be occluded points.

So the corresponding data term (5) is rewritten by substituting L (9) for L™ (3) as (10):

Egy(Dy:1,D\Dy ) = ¥ (1= (1) - L(xt.0, D(x1.0))) (10)

Xt,n
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Figure 2: Spatial-temporal coherence constraint. The optical flow of x; , and x, , is respec-
tively x ,, and x, . Ideally, the optical rays Cys ,, %y , will cross Cyr ,y %y ,y With the intersecting
point X Dt ) = PG, However, the occlusions, disparity and motion estimation errors
cause the two optical rays noncoplanar and make X D) and XP" ) the foot position of
the rays’ common perpendicular. So we use the difference between D(x, ,v) and its” ideal
value D*(x, /) to measure the spatial-temporal coherence.

where u(x; ) = 1/maxpy, ) L(X¢ 0, D(X; ))-

With the same Ej (6) as the initialization step, we apply bundle optimization [8] to refine
disparity map of each view at time ¢ one by one, and again plane fitting to handle remaining
few occlusions, also make parameters of some textureless areas more accurate.

3.3 Spatial-temporal consistency

Incorporating segmentation to bundle optimization improves disparities of the occlusions and
textureless regions, but also flaws originally refined object boundaries. If there’s only one
time instance or the purpose is to recover frame-independent disparity maps, we can apply
bundle optimization another two passes without plane fitting, and then generate spatially
consistent disparity maps at each time instance.

However, for a video sequence, different plane parameters of the same region in differ-
ent (¢,n) and the motion of scene inevitably lead to temporal inconsistencies and flickering
effects, which are obviously noticed in depth videos. So we incorporate the spatial-temporal
constraint into the data term to enforce temporal coherence.

Let E”/n’"(x,y,,) be the optical flow of x; ,, from time ¢ to ¢’ in view n. As shown in figure 2,
the red arrows represent motion vectors in image from time ¢ to ¢/, which means Ft’/n" (X)) =
Xy, and the mapping pixel of x; , is x; v, which has Ftt,n,", (Xt ) = Xy . In Section 3.2 and
here, we add subscript ¢ to C, because our method regards the moving of camera as the
moving of scene. Even when cameras move at the next moment, there’s no difference to our
framework as long as the parameters of cameras are all known in every (¢,n).

XP"0a) is 2 3D point on the optical ray Cy %y, whose projection to (¢',n) is closer to
Xy v than any other 3D points on the ray. XP" @) s the same. If D(x; ) is the accurate
disparity of x; ,, and there are no occlusions and motion estimation errors, optical ray Cy , Xy ,
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will cross Cyr %y v and XD 0vn) = XP"0 ) should be the intersecting point. But the factors

above cause the two optical rays noncoplanar, so X D70t ) and X2 0 ) respectively locate
at the foot position of common perpendicular of the two optical rays. D*(x, ,) and D* (x; )
can be computed using camera parameters of (+',n) and (¢',n’) as (11):

. . _ ReuKi, o RewKg
(D (xt/ﬁn),D (x,;yn/)) = (argmm)( d x,/’n — d x,/,n/ + Tt’.n — 7;/,"/). (11)
dt’,mdt'.n’ t’,n t/,n/

As a result, we define spatial-temporal coherence constraint as a function of difference
between D(x, ,) and D*(x, ,y) , using the same form of Gaussian distribution as the spatial
coherence constraint (8), denoted as py.

What’s more, we define the spatial-temporal color constancy constraint with the similar
form of (4) by considering the color difference of x,/ ,, and x, ,/, denoted as pcg.

So the likelihood (9) is modified to (12):

N N /
L(xt,naD(xt,n)) =N ) : Z (1 - 022 (xt,n)) . (pc *Ps+ Pest * p‘s't)~ (12)
Y (1-0m (%) 7=t
W=1, n'#n
n'#n

We still define E,; the same expression as (10), and E; the same as (6). When there are optical
flow errors or occlusions, P, - Py hardly outputs a large value to contribute to the likelihood
(12). But P, - P; is still able to ensure the spatial consistency.

With the concern of computation complexity, here we only use the disparity maps of
preceding time instance to refine those of current time-image. After processing one view
(disparity maps of other views are fixed) with spatial-temporal optimization, we apply color
and disparity based bilateral filter [2] to further improve the depth quality. And then the
disparities of other views are refined one by one in the same way. Two passes are sufficient
in this spatial-temporal optimization step.

4 Experimental results

Figure 3 illustrates the workflow of our framework with intermediate results of “book ar-
rival” [10] (16 views). (a) is a color image, whose left-right matching result with BP is
shown in (b). We can see many errors in textureless regions and occluded areas. After in-
corporating segmentation in (c), we get a better disparity initialization result shown in (d).
However, there still exist inaccurate disparities in areas with wrong plane parameters and
objects with similar color. So the spatial consistency optimization followed by segmenta-
tion is applied in (e) to correct some errors and enforce the spatial correlation of each view.
Finally, as illustrated in (f), we apply spatial-temporal consistency optimization to stabilize
and refine depth video. Averagely, it takes about 20 minutes to process all three steps for one
frame-time with resolution 1024 x768.

Figure 4 compares the disparity maps of “book arrival” with and without spatial-temporal
optimization. The column (a) is the color images of the same view 8 at different time
(frame 13 and 18). The column (b) shows the corresponding disparity maps generated
frame-independently, where the marked regions illustrates their inconsistencies. The dis-
parity errors of floor and wall around legs of stool result from inherent depth ambiguity for
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(d) (e) ()

Figure 3: Workflow illustration of our method. (a) The 3rd frame of view 11 in “book
arrival”; (b) Left-right matching with loopy BP; (c) Mean-shift segmentation; (d) Initial
disparity map with segmentation and plane fitting; (e) Spatial consistency optimization fol-
lowed by second-round segmentation; (f) Final disparity with spatial-temporal consistency
optimization.

inference. And the wrong plane fitting parameters of right-side wall cause larger disparities
when the man comes close to the chair. From column (c) of disparity maps estimated via
spatial-temporal optimization, we can see the improvement in corresponding regions. The
left column of (d) and (e) respectively show the magnified red and green regions of (b), while
the right columns respectively illustrate those regions of (c). Even the two frames are not ad-
jacent, which means they are not optimized together directly, our method can still propagate
the information through frames between them.

Figure 5 shows other three examples. The top row shows one color image of sequence
(a) “Akko&Kayo” [25] (5 views are used), (b) “Poznan Hall” [13] (9 views) and (c) “break-
dancers” [3] (8 views) respectively. The second row illustrates the depth maps estimated
frame-independently by other’s work [3, 16, 18]. Without spatial-temporal coherence con-
straint (third row), there also exist segmentation errors in our disparity maps which are
caused by homogeneous color of neighbor pixels. But the disparities can be effectively
refined via our spatial-temporal optimization method (bottom row).

It is worth mentioning that the camera sets of moving camera sequence “Poznan Hall”
are different from other sequences with static cameras. But the camera are all calibrated at
different time instances, in which situation our method still works while some other methods
[6] based on static cameras would fail. Note that the disparity of floor is estimated to be
farther than the truth because of the glare there.

5 Conclusions and Future Work

In this paper, we present an approach to estimate depth maps from multiview synchronized
video. The main contribution of the proposed method lies in that both the spatial and the
temporal consistency are considered. Different from [8], the usage of temporal constraint
benefits us for two aspects: the inaccurate result from single instant estimation can be further
refined by taking temporal correspondences into account; on the other hand, the flickering of
depth video is greatly alleviated by the spatial-temporal unified optimization.

In current method, the color constancy constraint only depends on pixel intensity, which
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Figure 4: Disparity maps of “book arrival”. (a) The 13th and 18th frame of view §; (b)
The corresponding disparity results estimated frame-independently; (c) Disparity maps gen-
erated via spatial-temporal optimization. (d)-(e) Magnified regions from (b) and (c) which
demonstrate the improvement at corresponding regions.

is not robust enough when multiview videos are not color calibrated well. Combining tex-
ture and structure information into the data term will be more applicable. Secondly, motion
estimation can be further refined in our framework, which leads to more reliable depth esti-
mation. We may use disparity maps to cross-validate the motion, and use motion to refine
disparities as in [14]. Another problem of our method is that the framework is complicated
and time consuming, limiting its applications in real time situation. As a result, speeding up
the approach, especially implementing it in a parallel fashion will also be our future work.
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