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Abstract

We present a novel method to detect curves with unknown endpoints using minimal
path techniques. Our work builds on the state of the art minimal path techniques currently
used to detect curves. Existing algorithms in the literature require the user to specify
both endpoints of the curve or one endpoint plus the total length of the curve. However,
in our approach, the user may specify any arbitrary initial point on the curve and the
algorithm can detect the complete curve (even with multiple branches) automatically
without the need for any additional information. We apply this algorithm to the problem
of crack detection in civil structures where cracks are modeled as 2D curves. The results
demonstrate that the algorithm is robust to variations in background and texture and is
able to detect curves accurately.

1 Introduction

Minimal path techniques have been used to detect features in images that can be modeled
as curves. The current minimal path theory works only with prior knowledge about both
the endpoints or one end point plus the total length of the open curve. We propose a novel
algorithm that relaxes the user input requirements of existing techniques and detects the
complete curve (even with branches) assuming the knowledge of only one arbitrary point on
the curve. This algorithm is applied to detect features that can be modeled as open curves:
cracks in structures and narrow elongated features in medical images. This procedure can
also be extended to closed curves and more complex topologies consisting of both closed
curves and open curves.

2 Prior Work and Background

Many problems in computer vision and image processing have been tackled using varia-
tional energy minimization techniques. Terzopoulos et al. [9] proposed the active contour
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model (snakes) that has been developed further for various applications like image segmen-
tation, feature extraction and tracking. An active contour is a curve that deforms its shape
to minimize an energy composed of two components: an internal energy component that
smoothes the curve, and an external energy component that guides the curve towards desired
image features. In active contour models, the curve initializations have to be performed very
carefully, otherwise the final evolved curves may become trapped within local minima rather
than the desired objects or features. To overcome some of the shortcomings of active contour
models, Cohen and Kimmel [5] proposed a minimal path approach that captures the global
minimizer curve of the contour dependent energy between two user defined endpoints. The
image dependent energy is selected so that it takes lower values at features of interest: for
instance, an energy directly dependent on the intensity value at each pixel can be chosen for
detecting cracks (as cracks typically appear darker than their immediate surroundings). The
original minimal path technique can be extended for 3D tree-structured object extraction [7],
but not for general 3D surface extraction. Ardon et al. [1] proposed a more general scheme
for 3D surface extraction between user supplied end-curves, but this scheme also requires the
user supplied curves to be located precisely on the desired 3D boundary. Minimal path tech-
niques have been applied to various applications like feature detection, contour completion
[4], tubular surface extraction [7] and motion tracking [3].

All the above approaches require precise knowledge of endpoints (2D) or end curves
(3D). In [2], a variant of the minimal path approach called Minimal Path Method With
KeyPoint Detection (MPWKD) was devised to find curves under less restrictive prior in-
formation. The user needs to provide one endpoint on the curve that will lead to detection of
representative keypoints along the curve using front propagation. For closed curves, a stop-
ping criterion was derived that requires no further prior information from the user. Other
researchers have used statistical shape priors [8, 16] and Principal Component Analysis
(PCA) [11] based initial conditions for extracting organ shapes like lungs and kidneys as
closed contours. However, for open curves, information about either both the endpoints or
one endpoint plus the total length of the curve is required to find the complete curve [2].
If there are multiple branches in a curve then all the endpoints need to be known up front.
The motivation of the current work is to find curves with less restrictive prior knowledge.
In particular, the current algorithm requires the user to supply just one arbitrary point (not
necessarily an endpoint) on the desired curve. The algorithm can find the complete curve
(including endpoints and branches) only using this information. This work will be very use-
ful in the detection of cracks in structures and detection of other features like optical nerves
and bone cracks that can be modeled as curves.

3 Methodology

3.1 Minimal Path Theory

Given a 2D or 3D image I : Q — R and two points p; and p,, the idea introduced by
Cohen and Kimmel [6] is to build a potential ® : Q — R, where ® > 0, that takes lower
values near the desired features of the image I. The choice of the potential & depends on the
application. For example, the potential function & for cracks can be taken to be a function of
intensity value at each pixel because cracks are darker than the background. In some other
applications, edge based potential functions can be used. The goal is to extract a curve that
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minimizes the energy functional E : <7, ,, — R"

= [ @rsnas (1)
where <7,

o1,p2 18 the set of all paths connecting p; to p» and s is the arc length parameter. The
curve connecting p; to p; that globally minimizes the energy E(7) is called the minimal path
between p; and p or the geodesic. The geodesic curve is denoted by Cp, ,,. The solution of
this minimization problem is obtained through the computation of the minimal action map
U : Q — R™T associated with py. The minimal action map is defined as the minimal energy
integrated along a path between p; and any point x of the domain Q:

Vx € QU (x) = mln /<I> )

YESp, x

In this document, the minimal action map will also be called the geodesic distance map. The
values of Uj are the arrival times of a front propagating from the source p; with velocity
(1/®) and U;(p1) = 0. U; satisfies the Eikonal equation:

VU (x)]| =P(x) for xeQ. 3)

The minimal action map calculation can be generalized to the case of multiple sources. The
minimal action map or the geodesic distance map associated with the potential ® : Q — R

with a set of n sources S = py,...,p, is the function U : Q — R™, where
¥x € Q,U(x) = min {Uj(x)}, C)
and
_ yemoépn / B(y )

Uj(x) is given by Equation 2 where p; is replaced by p;. For p; € S, U(p;) =0 and U
satisfies the Eikonal equation given by Equation 3.

Another important quantity for the current research is the Euclidean distance map. It is
the function L : Q — R that assigns the Euclidean length of the minimal geodesic between
x and the source S to every point x of the domain Q.

Vx e Q,L(x) = : ds, (6)
pj

where

Cpjx= 1rgm Cpix
is the minimum of all minimal paths from x to each source point p;. C), \ is calculated using
the potential ®. If @ =1 for all x € Q, then the geodesic distance map U coincides with the
Euclidean distance map L.

Sethian [12] proposed the Fast Marching method to solve the Eikonal equation that relies
on a one-sided derivative that looks in the up-wind direction of the moving front. An alternate
approach to solve the Eikonal equation was provided by Tsitsiklis in [14]. Given the source
points, the Fast Marching algorithm helps to calculate geodesic distance map U and the
Euclidean distance map L for every grid point. The details of the algorithm are given in
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[2]. The computation of the minimal action map U for a single source p; is done according
to the discretization scheme for Fast Marching given in [12]. The minimum of U is at the
front propagation start point p;, where U(p;) = 0. The gradient of U is orthogonal to the
propagating fronts since these are its level sets. Therefore, the minimal path between any
point g and the start point is found by sliding back along the gradient of the map U until
arriving at U (py). This back propagation procedure is a simple steepest gradient descent. It
is possible to make a straight forward implementation on a rectangular grid: given a point
g, the next point in the chain connecting g to p; is selected to be the neighbor p’ of ¢ for
which U(p') is minimum. The back propagation approach can be easily extended to the
multiple source points (py,p2,...,p,) scenario. In the case of multiple source points, the
back propagation procedure gives the minimal path between point ¢ and the set of source
points S = py,p2,...,pu. In addition, we can also find the end point s* € S from which
the minimal path to ¢ originates. The minimal path back propagation procedure will be
important for our algorithm and we will denote it by Minimal Pathbk(S, q), where S is the set
of source points and ¢ is the destination point.

The minimal path procedure described above requires the knowledge of two endpoints.
In addition, it also assumes that the potential function is not very noisy and provides enough
contrast that can enable the minimal path to track even convoluted, long curves along de-
sired features. In many applications, these conditions are not met and the desired feature
points have a lower potential only in a local neighborhood region. To overcome the limi-
tations of this approach, Benhamasour and Cohen [2] introduced the Minimal Path Method
With KeyPoint Detection (MPWKD) approach. This algorithm is based on the idea that
among all points on the Fast Marching boundary that have equal geodesic distance (U) val-
ues, the points near the desired features will have the maximum Euclidean distance L. As the
potential ® at the feature points is lower than the neighborhood points, the Fast Marching
boundary propagates with high speed 1/® and travels the furthest Euclidean distance along
the feature points. When the Fast Marching boundary propagates with the potential ® from
a set S, the first point for which Euclidean distance L exceeds A is identified. This point is re-
ferred to as a keypoint. Keypoints are recursively detected until a known endpoint is reached
or until the detected curve exceeds a given Euclidean length. The MPWKD requires prior
knowledge of both endpoints or one endpoint plus the total length of the curve. If the curve
has multiple branches then the user needs to know all endpoints of the curve. Our proposed
algorithm addresses this concern and detects curves with multiple branches just with a user
supplied arbitrary point on the curve. We discuss the algorithm next.

3.2 Curve Detection Algorithm

The keypoints detected in the MPWKD are approximately equally spaced along the curve.
We use this fact to find a good stopping criterion for curve endpoint detection. Starting from
the initial point s, fronts are propagated with potential @ and the first point that crosses a
Euclidean distance of A is detected. This point is labeled as the first keypoint k;. The Fast
Marching procedure to find the first keypoint k; is referred as FMM(S, ) in this document
where S is the source point set. The source point set S includes only the point s initially.
We use a synthetic image that has a curve with lower mean intensity value than the random
background for illustrating the algorithm. A A value of 30 was used for this image and the
potential function was chosen to be the intensity value. Figure la shows the image with
initial source point s on the curve. Figure 1b illustrates the use of FMM(S,A) to find ;.
The points inside the Fast Marching boundary are scaled to a lower intensity value for better
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(b)

@ (e)

(9] () @
Figure 1: (a) Synthetic image with initial point s. (b) Detection of first keypoint k. (c)
Detection of second keypoint k,. (d) Fast March propagation from point s’. (¢) Minimal path
on the curve. (f) Minimal path in background region. (g) Curve and keypoints detected after
5 iterations. (h) Curve and keypoints detected after 8 iterations. (i) Final Image with ordered
keypoints and terminating point marked by ‘x’.
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illustration. The source point set S is augmented by including the new keypoint k| and the
set S now becomes sUkj. An associative map m : S — § is generated that defines an origin
point for every keypoint in S. For a new keypoint, the origin point is the point closest in the
set S to the keypoint. Hence, for k{, the origin point is the initial point s. Though the initial
point s does not have an origin point explicitly because it is not a keypoint, we assign k; as
the origin point of 5. The reason is that the minimal path for two points is symmetric and can
be found by propagating the Fast Marching algorithm from either point (in this case s or k).
Therefore, if we started with k; as the initial point in source set S, s would be the keypoint
determined by the procedure FMM (S, A). Hence

m(s) = ki, (N
m(ky) =s. (3)

Now, the Fast Marching propagation is carried out from the updated set S and the next
keypoint k, is detected as shown in Figure Ic. Using the minimal path back propagation
algorithm Minimal Pathbk(S,k,), the point s* in S that is a part of the minimal path from k;
to S is identified. s* is the origin point of k; and m(k;) equals s*. In our example, origin
point s* is the initial point s. Next, we find the origin point s” of the point s* from the map m
(s’ is the point k; for our example). If there exists a continuous path of desired feature points
with low potential values between the points s’ and k5, then the minimal path between s” and
ks should also pass through the vicinity of s*. Figure 1e shows the minimal path from s" and
ky in the case where the minimal path overlaps with the curve. When there is no portion
of a curve on this minimal path, the path does not pass through the neighborhood of s* as
illustrated in Figure 1f. We denote the Euclidean distance from a source point set s to a point
ko as L(s',ky). The Fast Marching propagation required to determine L(s’, k) is denoted by
FMM(s' k;). Figure 1d depicts this Fast March propagation. From Figure le, we conclude
that if the minimal path between s’ and k; lies on the curve, then

L(s'  ky) ~ L(s',s*) + L(s*, k). 9)

As all keypoints are detected sequentially with a fixed Euclidean distance parameter A, the
Euclidean distance L between neighboring keypoints is close to A. The point s* is the closest
point to the keypoint k; in the set S. Hence, by definition of the procedure FMM(S, ), the
distance between s* and k; is close to A. Similarly, The point s’ should be at a distance of A
from s* because s is the origin point of s*. This fact is clear from Figure le. According to
Equation 9, the Euclidean distance L(S’, k;) should then be approximately 2A if the minimal
path from §’ to k, passes through s*. If Equation 9 does not hold (like in Figure 1f), then the
curve detection procedure can be terminated and the algorithm outputs that there is no curve
detected. Otherwise, this procedure of finding keypoints is recursively carried out and the
subsequent keypoints are identified as k» in algorithm CurveDetection that is given below.
The point s* determined at each iteration is either the initial source point s or a keypoint.
A tolerance error value € is specified for the termination. We used an € value of 0.24 or
10% of the total length 24 for the algorithm. The intermediate results of the algorithm are
shown in Figure 1g and 1h. The complete curve with keypoints (including the initial point)
is shown in Figure 1i. The keypoints are labeled according to the order of their appearance.
The last keypoint for which Equation 9 does not hold and the algorithm terminates is called
the terminating point (represented by ‘x’ in Figure 11). For a simple curve with no branches,
the estimated length of the detected curve should lie within A distance of the actual length.

The above algorithm can also be used on more complex curves . Figure 2(a) illustrates a
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Algorithm CurveDetection

Input: Image Im, potential function & and initial source point set S.

Output: Detected Curve C

1. Start with initial source point set S containing an arbitrary point s on the curve.

2. Set StopDetection = FALSE.

3. Use FMM(S,A) to find keypoint k.

4. Run MinimalPathbk(S, k) and initialize curve C to contain the minimal path between
S and k;.

5. SetS«— SUkj.

6. Setm(ky)=sand m(s) =kj.

7. while StopDetection = FALSE

8. do Run FMM(S, 1) to find new keypoint k.

9. Run Minimal Pathbk(S,k;) and find the origin point s* in set S.

10. Set curve C’ to contain the minimal path between S and k.

11. Compute point s’ = m(s*).

12. Use FMM(s', k) to calculate L(s', k7).

13. if |L(s',kp) —2A| < €

14. then C «— CUC',S + SUk; and m(ky) = s*.

15. else StopDetection = TRUE.

16. repeat

() (b) (©
Figure 2: (a) Curve with branches and source point s. (b) Intermediate result from the
algorithm after 9 iterations. (c) Final curve detection with keypoints and final terminating
point labeled by ‘x’.

synthetic image that has a curve with branches embedded in a random background of higher
mean intensity. An arbitrary source point s on the curve is provided as input to the algorithm.
Figure 2(b) demonstrates the intermediate result of the algorithm on the image in which the
curve and the keypoints detected are labeled. Figure 2(c) shows the final result with the
complete curve, all ordered keypoints and the terminating point. Figure 3(a) is a synthetic
image with a closed curve embedded in a random background and Figure 3(b) labels the
detected curve with keypoints. A more generalized version of the described algorithm is
being investigated to deal with the detection of complex curves with both open and closed
curve sections.
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(b)
Figure 3: (a) Closed curve with initial point s. (b) Final curve detection with keypoints

(including final terminating point labeled by x’.

4 Experimental Results

(@) ®) ©) (d)

Figure 4: (a) Asphalt crack image with initial point s. (b) Final crack detection with key-
points. (c) Crack image with multiple branches. (d) Final crack detection with keypoints.

Our algorithm is applied to detect cracks in civil structures and detect thin curve like
features in medical images. Cracks in structures can be modeled as curves that are darker in
the intensity than the background. Recent studies [13, 15] show that automatic detection of
cracks in these structures is very challenging because of multiple textures, shadows, variable
lighting, irregular background and high noise present in the images. Most algorithms use
multiple heuristic parameters that help to detect cracks for only a small data set of images.
Hence, it is useful to have an algorithm that can detect cracks in local regions using only one
user defined crack point. Figure 4(a) shows an asphalt pavement image with a user supplied
point on the crack. We use our algorithm and detect the crack with high accuracy. Figure
4(b) shows the detected crack, ordered keypoints and the terminating point. Figure 4(c), 4(d)
and attached video in supplementary material illustrate crack detection for a complex asphalt
crack with multiple branches. We also used a concrete image with a highly variable back-
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(b
Figure 5: (a) Concrete image with initial point s (b) Final crack detection with keypoints

ground for the experiments. Figure 5(a) shows the concrete structure image with a starting
point s on the crack. Our algorithm detects the crack accurately in the local neighborhood
of the user supplied point. The final result is given by Figure 5(b). Our algorithm can be
used to detect features appearing in medical applications such as bone cracks, thin capillaries
and optical nerves. We tested our algorithm on a medical image of a catheter tube shown in
Figure 6(a). A potential function based on the Laplacian is used to provide contrast between
the desired feature and the background. Figure 6(b) illustrates the potential function image.
Figure 6(c) shows the detected curve, keypoints and terminating point for the medical image.

(a) (b) ©
Figure 6: (a) Catheter tube image. (b) Edge based potential image. (c) Final curve detection
with keypoints

For quantitative evaluation of our results, we calculated the False Positive (FP), False
Negative (FN) and True Positive (TP) rates for the images. For real images that have fea-
tures like cracks, ground truth accuracy itself is suspect. To overcome this problem, Kaul et
al. [10] devised the scaled buffered distance (SBD) metric, which is a modification of the
Hausdorff distance. BD measures the distance between two curves and the values lie be-
tween 0 and 1. The values 0 and 1 indicate the best and worst performance respectively. The
results on all displayed figures are shown in Table 1. The algorithm results on the synthetic
images are very good because the background does not have features similar to the detected
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Table 1: Validation of Synthetic and Real Images

Rate Image Number
Figure 1 | Figure 2 | Figure 3 | Figure 4(a) | Figure 4(c) | Figure 5 | Figure 6
TP% 93.8 96.1 90.9 99.1 97.2 97.8 88.1
FP% 0 0 0 16.3 18.1 43 12.5
FN% 6.2 39 9.1 1.3 10.1 8.1 4.6
BD 0.07 0.05 0.09 0.19 0.26 0.13 0.11

curve. Only small FN rates are encountered because of the termination criterion given by the
algorithm. The ground truth for crack data was collected from structural experts. They were
asked to represent the crack with zero-width curves in the local neighborhood of the initial
source point s. For crack images in asphalt structure and the medical image, FP rates are
moderately high because the background texture has uniformly dark regions that have prop-
erties similar to cracks. FN rates in crack images arise because there are significant breaks in
crack locations and the crack features cannot be connected by continuous curve. SBD val-
ues for our algorithm are good indicating that the ground truth curve and the detected curve
overlap with each other. The results of the algorithm on synthetic and real data demonstrate
the validity of our algorithm. We also conducted a preliminary investigation on the influence
of the Euclidean length interval A (interval between successive keypoints) and the Tolerance
Error value. Features like cracks sometimes do not form a continuous path and have breaks
between them. If the user wants to connect these cracks together, a higher value of A should
be provided. A lower value of A will lead to faster termination. When the potential function
does not provide enough contrast between the features and the background even in a local
neighborhood, higher Tolerance Error value needs to be used. The effect of parameters A
and Tolerance Error will be investigated more in the future.

5 Conclusions and Future Work

We have presented a novel algorithm for detecting curves with unknown endpoints based
on minimal path techniques. We showed that this algorithm can detect curves using any
arbitrary point on the desired curve as the sole user input. Synthetic and real image data
were used to validate our algorithm. Specifically, the algorithm was applied to detect cracks
in variable background structural images and to detect thin elongated medical features. In
the future, more features like optical nerves, thin capillaries and bone cracks can utilize this
algorithm. The algorithm can also be generalized to detect closed curves and curves with
complex topologies. The algorithm is also easy and straight-forward to extend to volumetric
data sets for the extraction of 3D (and even higher dimensional) curves.
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