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Figure 1: List of intuitions in our paper and comparison with related works. (a) Intuition
1: Rigid objects typically lie up-right on the supporting plane. (b) Intuition 2: Under the
perspective camera model, the size of an object in the 2D image is an inversely proportional
function of its distance to the camera when the object pose is fixed. (c) Intuition 3: The
statistics describing the 2D appearance (features, texture, etc...) of foreground objects are
different enough from those describing the 2D appearance of the supporting surfaces.
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In this work, we present a new way to establish the contextual re-
lationship between objects and the scene geometric structure. Specifi-
cally, we are interested in modeling the relationship between: i) objects
and their supporting surface geometry: Geometrical configuration of
objects in space is tightly connected with the geometry (orientation) of
the surfaces holding these objects (Fig. 1 - Intuition 1); ii) objects and
observer geometry: Object appearance properties such as the scale and
pose are directly related to the observer intrinsic (focal length) and ex-
trinsic properties (camera pose and location) (Fig. 1 - Intuition 2); iii) ob-
jects and supporting regions: The statistics describing the 2D appear-
ance (features, texture, etc...) of foreground objects are different from
those describing the 2D appearance of the supporting surfaces (Fig. 1 -
Intuition 3).
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Figure 2: The Context Feedback Loop. We demonstrate that scene layout estimation and
object detection can be part of a joint inference process. In this process a supporting region
segmentation module (RS) and a scene layout estimation module (LE) provides evidence so as
to improve the accuracy of an object detector module (OD). In turn, the OD module enables
a more robust estimation of the scene layout (supporting planes orientation, camera viewing
angle) and improves the localization of the supporting regions.

Specifically, we propose a new coherent framework for joint object
detection, 3D layout estimation, and object supporting region segmenta-
tion from a single image. Our approach is based on the mutual interac-
tions among three novel modules (see Fig. 2): i) object detector (OD); ii)
scene 3D layout estimator (LE); iii) object supporting region segmenter
(RS). The interactions between such modules capture the contextual geo-
metrical relationship between objects, the physical space including these
objects, and the observer. An important property of our algorithm is that
the object detector module, developed based on [3], is capable of adap-
tively changing its confidence in establishing whether a certain region of
interest contains an object (or not) as new evidence is gathered about the
scene layout. This enables an iterative estimation procedure where the
detector becomes more and more accurate as additional evidence about a
specific scene becomes available (Fig. 3).

Extensive quantitative and qualitative experiments are conducted on
a new in-house dataset [3] and two publicly available datasets [1, 2], and
demonstrate competitive object detection, 3D layout estimation, and ob-
ject supporting region segmentation results. Here we use the results from
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Figure 3: Interactions between different modules contribute to improve the detection per-
formance. Panels show the results of the baseline detection (a), joint detection and 3D layout
estimation (b), joint detection and supporting region segmentation (c), and our full system (d).
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Figure 4: Detection performance using precision-recall measurement. Panel (a) shows the
results when all modules (OD,LE,RS) are used in the loop from iteration 1 to 7. Panel (b)
shows that the performance of our full system asymptotically converges to a steady state.

Loop Iterations | ey (radius) en (%) er (%) ?eg A (%) Yeg S (%)
First Loop 0.125 25.9 13.2 2.07 51.2
Final Loop 0.118 21.2 11.7 1.79 56.9

Table 1: Estimation errors of surface layout parameters (n,m, f), and supporting regions.
The first three columns show the errors of the estimated surface normal e,, camera height
ey, and surface normal e;. Each of the errors are defined as follows: e, = arccos (neyty ),

W and e W where subscript labels est and gt indicate estimated and

ground truth values respectively. The last two columns report two types of segmentation errors:
eg;, and e%g are the amount to which the segmenter mistakenly predicts a foreground region
as supporting region and the segmenter misses the truth supporting region, respectively. In

detail, let /p denotes the supporting region predicted by our model, /sg denotes the ground -truth
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supporting region, and I denotes the ground truth foreground objects. We define e/’ .L "P‘ZI‘F ‘
and ewg = ‘[”‘pl’“‘ where | o | counts the pixel number. The smaller e/, the lower the false
kS| Aeg

alarm rate is for confusing foreground pixels as background. The higher ewg, the larger the area
our algorithm can classify as supporting region. All five types of errors are further reduced as
the number of iterations increases (the table reports results for the 1st and 7th iteration).

the in-house dataset as examples. Fig. 4(a) shows the overall Precision
Recall curve of our system. Fig. 4(b) and Table 1 demonstrate that the
feedback loop is effective in improving i) 3D layout estimation and sup-
porting region segmentation, ii) the object detection performance. Similar
results are observed in other two datasets [1, 2].
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