
Making a Shallow Network Deep: Growing a Tree from Decision Regions of a Boosting Classifier

Tae-Kyun Kim*
http://mi.eng.cam.ac.uk/~tkk22

Ignas Budvytis*
ib255@cam.ac.uk

Roberto Cipolla
cipolla@cam.ac.uk

Department of Engineering
University of Cambridge
Trumpington Street, Cambridge
CB2 1PZ, UK
*indicates equal contribution.

c0 c1 c0 c1 c0 c1

H(x)= i hi(x)

h1 hi hT

1 i T

x

…… ……

: a boosting
classifier

H1(x)

H2(x)

x

(a) (b)

α

Σ

α α

α
Σ

Figure 1: Boosting as a tree. (a) A boosting cascade is seen as an imbalanced
tree, where each node is a boosting classifier. (b) A boosting classifier has a very
shallow and flat network where each node is a decision-stump i.e. weak-learner.

S uper tree

weaklearners
A P L : 3.8

12

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

B oosting class ifier

A P L : 20
weaklearners

6

8

11

16

13

2

2

3

2

1

4

7

(b)(a)

34 56791217

2739

54

74

7592

110
128
140152

163175
141153164

154
165176

184 4055

28

415642
57

1829
43587693

111

13
1930

44

597794
112129

142

6078

95

20
3145617980

96
113
1304662

81
97114

810

14213247

63

8298
115

131

143
144155

48

64

2233

49
65

8399116117132

6684100118133
145156

166
177185

85
101119

102
120134

146157
16717815

23
3450

6724
35 3651

6886103121
135

147158
16817916918018612213669

87
104123

11
16

2537

52

70
88

105
124
137

148159170181187

7189106
125

26
3853

7290107
73

91

108
126

138
149

150160
171

182172

183
188 189

127
139151161173 162174

109

Figure 2: Converting a boosting classifier into a tree for speeding up. (a) The
decision regions of a boosting classifier (top) are smooth compared to a conven-
tional decision tree (bottom). (b) The proposed conversion preserves the Boosting
decision regions and has many short paths speeding up 5 times.

This paper presents a novel way to speed up the classification time of
a boosting classifier. We make the shallow (flat) network deep (hierarchi-
cal) by growing a tree from the decision regions of a given boosting clas-
sifier. This provides many short paths for speeding up and preserves the
Boosting decision regions, which are reasonably smooth for good gener-
alisation. We express the conversion as a Boolean optimisation problem.

Boosting as a tree: A cascade of boosting classifiers, which could be
seen as a degenerate tree (see Figure 1(a)), effectively improves the clas-
sification speed. Designing a cascade, however, involves manual efforts
for setting a number of parameters: the number of classifier stages, the
number of weak-learners and the threshold per stage. In this work, we
propose a novel way to reduce down the classification time of a boosting
classifier not relying on a design of cascade. The chance for improve-
ment comes from the fact that a standard boosting classifier can be seen
as a very shallow network, see Figure 1(b), where each weak-learner is a
decision-stump and all weak-learners are used to make a decision.

Conversion of a boosting classifier into a tree: Whereas a boost-
ing classifier places decision stumps in a flat structure, a decision tree
has a deep and hierarchical structure (see Figure 1(b) and 2(b)). The
different structures lead to different behaviours: Boosting has a better
generalisation via reasonably smooth decision regions but is not optimal
in classification time. Whereas a conventional decision tree forms com-
plex decision regions trying classification of all training points, a boosting
classifier exhibits a reasonable smoothness in decision regions (see Fig-
ure 2(a)). We propose a method to grow a tree from the decision regions of
a boosting classifier. As shown in Figure 2(b), the tree obtained, called su-
per tree, preserves the Boosting decision regions: it places a leaf node on
every region that is important to form the identical decision boundary (i.e.
accuracy). In the mean time, Super tree has many short paths that reduce
the average number of weak-learners to use when classifying a data point.
In the example, super tree on average needs 3.8 weak-learners to perform
classification whereas the boosting classifier needs 20.

Boolean optimisation: A standard boosting classifier is represented
by the weighted sum of binary weak-learners as H(x) = ∑

m
i=1 αihi(x),

W2

R3

R5

R6

R1
R2

R4R7

W1

0

0

0

1

1

1

W3

W1 W2 W3 C

R1 0 0 0 0

R2 0 0 1 0

R3 0 1 0 0

R4 0 1 1 1

R5 1 0 0 1

R6 1 0 1 1

R7 1 1 0 1

R8 1 1 1 x

0 1

0

0

1

1

W1

W2

W3

10

0

1

R4

R5,R6,R7,R8

R1,R2

R3

W1W2W3 v W1W2W3 v W1W2W3 v W1W2W3 W1 v W1W2W3

Figure 3: Boolean expression minimisation for an optimally short tree. (a) A
boosting classifier splits a space by binary weak learners (left). The regions are
represented by the boolean table and the boolean expression is minimised (middle).
An optimal short tree is built on the minimum expression (right).

No. of
weak

learners

Boosting Fast exit (cascade) Super tree (cascade)

False
positives

False
negatives

Average
path length

False
positives

False
negatives

Average path
length

False
positives

False
negatives

Average
path length

20 501 120 20 501 120 11.70 476 122 7.51

40 264 126 40 264 126 23.26 231 127 12.23

60 222 143 60 222 143 37.24 212 142 14.38

100 148 146 100 148 (144) 146 (149) 69.28 (37.4) (145) (152) (15.1)

200 120 143 200 120 (146) 143 (148) 146.19 (38.1) (128) (146) (15.8)

Caltech bg datasetMPEG-7 face data

BANCA
face set

MIT+CMU face test set

Figure 4: Experimental results on the face images. Example face images are
shown in right.

where αi is the weight and hi the i-th binary weak-learner in {−1,1}.
The boosting classifier splits a data space into 2m primitive regions by m
binary weak-learners. Regions Ri, i = 1, ...,2m are expressed as boolean
codes (i.e. each weak-learner hi corresponds to a binary variable wi).
See Figure 3 for an example, where the boolean table is comprised of
23 regions. The region class label c is determined by the boosting sum.
Region R8 in the example does not occupy the 2D input space and thus
receives the don’t care label marked “x” being ignored when representing
decision regions. The boolean expression for the table in Figure 3 can be
minimised by optimally joining the regions that share the same class label
or don’t care label as

w1w2w3∨w1w2w3∨w1w2w3∨w1w2w3
−→ w1∨w1w2w3

where ∨ denotes OR operator. The minimised expression has a smaller
number of terms. Only the two terms, w1 and w1w2w3 are remained rep-
resenting the joint regions R5−R8 and R4 respectively. A short tree is
then built from the minimised boolean expression by placing more fre-
quent variables at the top of the tree (see Figure 3(right)).

Standard methods for Boolean expression minimisation, which has
been previously studied for circuit design, are limited to a small number
of binary variables i.e. weak-learners. Furthermore, all regions are treated
with equal importance. We propose a novel boolean optimisation method
for obtaining a reasonably short tree for a large number of weak-learners
of a boosting classifier. The classifier information is efficiently packed
by using the region coding and a tree is grown by maximising the region
information gain. Further details are about a better way of packing the re-
gion information and the two stage cascade allowing the conversion with
any number of weak-learners. See the paper for details.

Experiments: Experiments on the synthetic and face image data sets
show that the obtained tree significantly speeds up both a standard boost-
ing classifier and Fast-exit, a prior-art for fast boosting classification, at
the same accuracy. The proposed method as a general meta-algorithm is
also shown useful for a boosting cascade, since it speeds up individual
stage classifiers by different gains. Figure 4 compares the average path
lengths of the methods at the fixed accuracy at 0 threshold in the experi-
ment using the face images. The proposed method is further demonstrated
for rapid object tracking and segmentation problems. See the technical re-
port at the authors’ website.

