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Abstract

Three methods are explored which help indicate whether feature points are poten-
tially visible or occluded in the matching phase of the keyframe-based real-time visual
SLAM system. The first derives a measure of potential visibility from the angular prox-
imity to keyframes in which they were observed and globally adjusted, and preferentially
selects those with high visibility when tracking the camera position between keyframes.
It is found that sorting and selecting features within image bins spread over the image
improves tracking stability. The second method automatically recognizes and locates 3D
polyhedral objects alongside the point map, and uses them to determine occlusion. The
third method uses the map points themselves to grow surfaces. The performance of each
is tested on live and recorded sequences.

1 Introduction
Establishing image correspondence is central to the recovery of camera pose and scene struc-
ture from multiple views. Where processing time is unlimited, the use of point features with
rich descriptors, aided by densification using iconic pixel matching and verification using
robust fitting does much to eliminate mismatching in non-pathological imagery. In real-time
structure from motion and SLAM, however, there is little time to linger at the image level,
features are often described by only a few surrounding pixels, and by the time more has been
learnt about the scene there is no recourse to past imagery.

The difficulties generated by this time pressure differ according to the size of the maps
generated. In visual SLAM based on the EKF [3] [4] computational complexity is dominated
by the square of the number of scene points, and the 3D maps which can be updated in
real-time are quite small in extent — around 102 points on current machines. Avoiding
mismatches is then all the more important. But now small is beautiful, as more time can
be devoted to each point. The maintenance of a complete covariance matrix places useful
bounds on the image region where matches may be found, the compact map restricts the
opportunity for occlusion, and the sparse structure makes it relatively cheap to search for
coplanarity between map points using hypothesize and test. This has been used both to
detect occlusion and to reduce the size of the scene representation [6] [1]. A disadvantage of
sparsity, however, is that the structure is little more than a set of pegs on which to hang the
computation of camera pose.
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By contrast, at a typical operating point in keyframe-based SLAM using visual odometry
and bundle adjustment [10] complexity is linear in the number of map points and quadratic1

in the number of keyframes, and the map size and extent can be larger — 104 points, say.
While the structure recovered is more representative of the scene, the opportunity for mis-
matching is greater, particularly as the scene can easily extend to involve occluding surfaces.

In both approaches, failure to match at all can be as damaging as matching incorrectly.
The quality of camera tracking is often assessed using the ratio of the number of map points
that are successfully matched to the number of points that are considered potentially visible.
If this ratio falls below some acceptable threshold, tracking may be deemed to have failed.

This paper describes the exploration of methods which help determine whether points are
potentially visible in the matching phase of the keyframe-based system of [10]. The first sorts
image features according to the angular proximity to keyframes in which they were observed
and globally adjusted, and chooses high scoring points when tracking the camera position
between keyframes. It is found that sorting and selecting points within image bins spread
over the image improves tracking stability, while also reducing the cost of sorting. The
second method involves higher level processing, and uses automatic recognition of the faces
of a 3D polyhedral object to locate the object within the point map and hence to determine
if map points are certainly occluded. The third method lies somewhere in between, and uses
the reconstructed map points themselves to grow surfaces.

Section 2 gives a brief overview the underlying structure from motion system. Section
3 describes the derivation of potential visibility and Section 4 describes the use of objects
and surfaces to detect occlusion. Each section describes experiments carried out on live and
stored imagery. The paper concludes in Section 5.

2 Background
Our investigations are based on the parallel tracking and mapping method of [10] where
concurrent threads balance (i) the frame-rate task of camera pose estimation assuming a
known map with (ii) the lower-rate optimization using bundle-adjustment of a subset of
poses (keyframes) and the entire map structure.

Fig. 1(a) summarizes the camera tracking thread using an already initialized 3D map. On
capture, each frame is sub-sampled into a four-level pyramid, and corner features found at
each scale by the FAST-10 detector [16]. A prior for the camera pose is estimated using a
constant velocity αβ filter which switches to an exponentially decaying model in the absence
of measurements. Potentially visible map points are projected into the image, and up to 60
matches sought at the coarsest scale to estimate the pose µµµ using robust minimization. Then
up to 1000 matches are sought at coarse and fine scales and the pose re-optimized. For
both stages, the optimum is found using some ten iterations of Gauss-Newton with a Tukey
M-estimator cost function (see [19]) based on the reprojection errors ei = |xi−x(µµµ,Xi,C)|,
where xi is the measurement and x(µµµ,Xi,C) is the generative model involving scene point
Xi and known camera intrinsics and lens distortion parameters C.

The fraction of potentially visible features that is successfully matched is monitored to
provide a measure of tracking quality. Two thresholds are set. If the fraction exceeds the
higher, tracking is deemed good, and if it falls between them, tracking continues but the
frames involved are prevented from becoming keyframes for the mapping process. If it falls
below both, tracking is assumed to have failed terminally, and a relocalization method is
invoked to recover the lost camera to a pose where tracking is able to resume [11].

1The quadratic dependency eventually becomes cubic.
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(a) Tracking
while map initialized & new image captured do

Form pyramid, compute corners
Predict camera pose
for coarse then fine scale in pyramid do

Project map points into image
Match
Update pose from matches

end for
if tracking good & keyframe criteria met then

Offer as keyframe to map maker
else if tracking lost then

Relocalize
end if

end while

(b) Mapping
Initialize map from two views
Set running
while running do

if new keyframe offered and acceptable then
Update existing data associations
Compute new 3D points from two views

else if not locally converged then
Perform local adjustment

else if not globally converged then
Perform global adjustment

else
Update data associations

end if
end while

Figure 1: Code summary of the threads for (a) camera tracking and (b) 3D scene mapping in
PTAM.

Fig. 1(b) summarizes the mapping process. A starting camera pose is selected by the user
and its image and list of features form the initial keyframe, with pose µµµ1 ≡{R1,T1}= {I,0}.
The camera is moved carefully to a new position to allow features to be tracked in the image.
This image is captured as the second keyframe, and Nistér’s relative pose algorithm [15]
used to derive the pose µµµ2 = {R2,T2}. Pairs of matching FAST corners from the two images
are then used to triangulate the initial set of 3D scene points {Xi}. In practice, care is taken
to make |T2−T1| ≈ 100 mm so that a reasonable, but fundamentally arbitrary, scale can be
applied to depth and speed.

With the map initialized, camera tracking begins as described earlier, and new keyframes
added and stored when required for spatial coverage. The estimated 3D positions {Xi},
i = 1 . . . I of all map points and keyframe camera poses {µµµk}, k = 2 . . .K (i.e., all except the
first, which is fixed) are optimized in a bundle adjustment, using Levenberg-Marquardt [13]
to minimize the reprojection error wrapped in a Tukey M-estimator cost function [17].

3 Potential visibility
A feature Fi is entered into the map at Xi using measurements from the first two keyframes
in which is observed. Let their indices be ki1 and ki2. In [10] a notional normal direction
to the surface underlying the patch is hypothesized to lie along the direction of the camera’s
optic axis in the first keyframe, ni = −z(ki1). Two uses are made of that surface normal in
later calculations. First it is used to warp the image patch around a feature for correlation
matching. Second, it plays a part in the derivation of potential visibility. A feature is deemed
potentially visible if (i) its projected position is in image, (ii) the angle between the feature’s
normal and the current optic axis is less than a threshold (60◦ is used), (iii) the warped image
patch does not become too small, and (iv) the point is neither too near nor too far from the
camera. (In practice, the last two require the warped image patch to be matched in one of
levels 0-2 of the current image’s pyramid.)

The criteria are broadly successful. However, determining potential visibility by measur-
ing the angle between the current optical axis of the camera and that in only the first frame in
which the features is observed appears unnecessarily crude. The normal from a single view
should lie along the viewing direction not the optic axis and account should be taken of all
keyframes in which the feature is matched.

Here we wish to improve on the hypothesis of the surface normal from a sequence and
frame and to propose a more probabilistic measure of potential visibility. The motivation is
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Figure 2: Feature Fi viewed by a camera whose optic axis is along z. Keyframe ki1 is the
first keyframe, and keyframe ki is any keyframe in which Fi is observed. The current frame
is that used by the tracking thread and is therefore not a keyframe.

that, as mentioned earlier, shortage of time allows only a restricted number of map features
to be used in the camera tracking thread, and using those that are more likely to be visi-
ble should not only help tracking numerically, but also allow more realistic monitoring of
tracking failure through the fraction of potentially visible points that are matched. Later in
the paper we consider more absolute determination of visibility through occlusion by static
objects and surfaces in the map.

3.1 A measure of visibility
As the camera moves in the environment, the i-th feature Fi may be observed in differ-
ent keyframes. A list Li of keyframes in which the feature is observed is maintained Li =
{ki1,ki2, . . .}, which allows the projected ray from the feature to the camera centre to be
recalled in the world coordinate system as Viki = Tki −Xi, ki ∈ Li, as shown in Fig. 2.

During camera tracking (where the current camera frame is de facto not a keyframe) if
feature Fi is predicted to project into the image along ray Vi = T−Xi at the predicted camera
pose, a measure of alignment with the closest viewing direction in the feature’s keyframe list
is sought

αiki = max
ki∈Li

[
Viki ·Vi

|Viki | |Vi|

]
(1)

and the feature’s current visibility score vi = [0,1] is determined from

vi =
{

(αi j −α0)(1−α0)−1 if αi j > α0
0 otherwise. (2)

In later experiments, α0 = 1/
√

2 is used, corresponding to a cut-off angle of 45◦.
The linear roll-off in α provides a cheap computation for a flatter distribution in angular

deviation. However the test for this approach is not in the merit of individual values, but
whether it provides an increased chance of choosing a better subset of features during track-
ing. Recall that during tracking the pose of the camera is re-estimated using first some 60
features at coarse scale, then at most 1000 points from coarse to fine scales in least squares
using a Tukey M-Estimator. There is insufficient time either to use all points, or to per-
form stronger robust estimation based on sampling, such as employed in [5]. With a binary
estimation of visibility, the selection of points within those regarded as visible is random.
Here instead we can sort the features by visibility score and use the features with the highest
scores first.
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Figure 3: (a) Images from the desk sequence where the camera’s view direction spans a wide
angle. (b) Comparison of performance over time using (i) the original, (ii) sorted visibility
across the entire image, (iii) sorted visibility in regions. The performance measure is the ratio
of successfully matched features. (c,d) The maps recovered using (i) and (iii) respectively.

3.2 Spatial coverage
An observed side effect of selecting on visibility scores v computed across the entire image
is that the features selected tend to be clustered at a small number of locations in the scene
and image, rather than spread throughout. In some scenes this causes the estimated pose
of even a stationary camera to cycle between two or more poses: the change in estimated
pose causes a new set of clustered features to be selected, again changing the pose, all in a
deterministic fashion. This interesting but unwelcome phenomenon is avoided by requiring
points to be selected from throughout the image. The feature visibilities are sorted within n
image bins. If p points are to be used in all, an attempt is made to use the most visible p/n
from each. If a bin is exhausted, the demand from the remainder becomes p/(n−1), and so
on.

3.3 Warping
In common with many schemes, [10] used a warped image patch for feature matching, but
one based on the feature in the first keyframe. Another small modification made here is to
warp the patch created on the fly from the image of the keyframe closest in angle, according
to the rotation and distance of the current camera from it.

3.4 Experiments and Results
The modified camera tracking and map-making methods are implemented as threaded pro-
cesses in C++, and are run here on a dual core 2.66 GHz cpu. Grey level images of size
640×480 pixels are provided at 30 Hz from a CCD camera over a Firewire link.
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Figure 4: Stability in (a) position and (b) orientation of the camera using points selected
(i) randomly using the original binary visibility score, and (ii, iii) in decreasing order of the
modified score sorted across the entire image and within image regions, respectively.

Fig. 3(a) shows stills from the sequence of a cluttered desk as the camera is translated (of
necessity) and rotated through some 90◦ over four seconds. The comparative performance of
(i) the original binary visibility measure, (ii) the proposed visibility measure sorted over the
image, and (iii) the proposed measure sorted in image regions is shown in Fig. 3(b), where
the ratio of points matched to points considered potentially visible and tracked is shown as a
function of frame number. The falling ratio value of the original eventually causes tracking
to be stopped early (at about 60◦) because, although there is no occlusion caused by other
objects, visibility is derived from the first keyframe alone. The modified methods sometimes
result in a smaller ratio but one that is stable.

Figs. 3(c,d) compare the maps recovered with the original and with the graded visibility
in regions. Apart from the premature end to tracking in the original, there is no significant
difference between them. The more robust tracking performance with the lower (but steady)
ratio of matches is not being bought at the cost of overall map density or quality.

To assess the effect of the modifications on pose recovery in the tracking thread, the
estimation was iterated ten times on each image of a sequence, and errors from the mean
evaluated for position and orientation. Figs. 4(a) and (b) shows these error magnitudes for the
desk sequence using selection of points using (i) the original visibility score; (ii) the modified
visibility score across the entire image; and (iii) the modified score within distributed image
regions. The original shows the greatest error, and tracking ceases when the apparent fraction
of potentially visible features being tracked and matched fell below threshold. The modified
visibility measure sorted within regions performs best overall.
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potentially visible points.
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Fig. 5 shows the extra time (black) of using sorted visibility in image bins, and the num-
ber of points deemed visible (red) which affects the sorting time. The number of all points in
the map (blue) is also shown for reference. The camera movement that induces another set
of points closest in angle, and points clustered in some image bins, causes the ordering time
to jump intermittently. The extra time required for each frame is 5.33 ms on average.

4 Detecting occlusion
The method of increasing the likelihood of picking visible points cannot indicate that points
are occluded — the point maps remain transparent. The paper now explores two methods of
detecting occlusion.

4.1 Using modelled objects
The first of these augments the map with known 3D objects which are static and form part
of the surroundings’ structure. It determines whether parts of the map are occluded by them.
Object detection, recognition and pose initialization are performed using an extension of [2]
to fully 3D objects.

An additional thread, running independently of those in Fig. 1, computes SIFT features
[12] in the keyframes alone, and compares their descriptors with those stored in a database.
If sufficient support is found, the object is flagged as potentially visible. As the objects here
are polyhedral, mismatching is reduced by grouping coplanar features in the database and
seeking only matches which are consistent with a single homography transforming image to
database feature positions.

Once an object has been found visible in two or more keyframes, the scene positions of
keypoints with matches are optimized, taking the keyframe camera poses from the mapping
thread as fixed known values. With just two views an algebraic residual is minimized [8],
but as more keyframes are added Levenberg-Marquardt is used to minimize the overall pro-
jection error. The scaling, rotation and translation in the similarity transformation between
the points in the object frame XB and the recovered scene points X are found by minimizing
∑ ||Xi− sRXBi−T||2 using Horn’s closed-form solution to the absolute orientation problem
[9]. Note that the object scale is adjusted to the scale of the map, not vice versa. This keeps
the adjustment local rather than global, which is preferable as there are drifts in map scale
over time and space. (For moving objects, the identity and initial pose of the object are
further verified by attempting to track crease edges and albedo markings held in the model
using a robust RAPiD tracker [7]. Here however we consider only stationary objects.)

Fig. 6(a) shows stills from an experimental run where some 30% of the potentially visible
points built early in the sequence (40% of image area) become occluded by a pillar in the
bottom left image. As shown in Fig. 6(b), without occlusion detection tracking fails when
the percentage of supposedly visible features that are successfully matched falls off.

The pillar was then modelled as an object and some texture applied so that it could be
recognized and located automatically. Fig. 6(c) shows the results with occlusion detection.
As in Fig. 3(b) results are shown without the visibility measure, with the visibility measure
sorted across the entire image, and with visibility sorted in image regions. Again, the last
measure performs best.

4.2 Growing higher order structure
While explicit modelling of object in visual SLAM has proved worthwhile when the ob-
jects move or are likely to move [18], we find taking a similar approach to static structural
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Figure 6: (a) Stills from the basement sequence where a pillar occludes a large part of the
map. (b) Without occlusion detection, tracking fails quickly. (c) With occlusion detection
tracking continues. The performance is further improved by including the visibility measure
of § 3.

(a) (b)
Figure 7: (a) Planar fragments are fitted to points which are visible within image bins, which
are being tracked and matched, and which are not assigned to another fragment. (b) Example
(enlarged from Fig. 8(c)).

elements of the scene unduly onerous. A lower-level approach to occlusion detection is
through the growth of scene surfaces from point structure. This has been demonstrated by
Carranza and Calway [1] using planar surfaces in EKF-based visual SLAM maps. Because
EKF-SLAM’s maps are sparse, and each point typically more accurately located in 3D, they
found it feasible to generate each planar hypothesis using three scene points alone, and to
test that the scene viewed within each triangle was indeed planar using image warping. Their
principal goal was not occlusion detection per se, but the reduction of the state dimension by
replacing many points with a single plane.

However, with denser point maps this approach becomes prohibitively expensive. Here
instead we compute planar surfaces using the 3D map points rather than the image as direct
support. Our aim is to reconstruct many planar surfaces to allow reasoning about occlusion
and timely prevention of tracking failure rather than to achieve the fully dense reconstruction
of scene structure proposed by Newcombe and Davison [14].

At every frame (i.e. at the tracking frame rate of 30 fps) an attempt is made to fit plane
fragments using robust methods. The seed points selected are those 3D map points which
(i) are visible within an image bin (Fig. 7), (ii) are being tracked and matched, and (iii) are
as yet unassigned to an existing planar fragment. To support a hypothesis, all points which
satisfy (i) are used.

As soon as a plane fragment — each described in the map by location, surface normal
and convex hull points — is created, it can be used in further determination of visibility (i)
above. However, to save time testing for occlusion (rather than to generate more convincing
scene reconstructions) a process merges the fragments into larger planes and further grows
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Figure 8: (a) The approximate camera path between a set of library shelves and (b) stills
from the sequence at the camera positions shown in (a). (c) shows the fragments early in
the sequence, (d) and (e) show the merged planes detected (cf surfaces (1) and (2) in (a)).
(f) shows the detection of surface (3) allowing occluded map points to be ignored. (See
supplementary video.)

the planes by accreting points.
Fig. 8 illustrates the processing. Fig. 8(a) shows a stylized plan of the camera motion

between a set of library shelves, with (b) showing stills cut from the sequence at (approxi-
mately) the camera positions sketched in (a). Without occlusion detection, the parallel track-
ing and mapping method prevents further keyframes being added at the third position, when
the fraction of successfully tracked points falls sharply, and tracking fails shortly afterwards.
Fig. 8(c) shows the 3D map and planar fragments built at the start of the sequence. Fig. 8(d)
shows the larger plane corresponding to surface (1) in (a) created by merging and point ac-
cretion. Fig. 8(e) shows the addition of end of the shelving (2 in (a)), and (f) shows the map
with the surface (3) detected and added. This allows the tracking process to consider only
points on the visible surface allowing the addition of keyframes to continue. A video of this
sequence is provided.

Figure 9: The set of camera positions computed using occlusion detection in front of surface
(3), shown enlarged from 8(f). Circled is an erroneous camera position obtained after turning
off occlusion detection.
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Fig. 9 shows the succession of camera positions in front of the surface (3) of Fig. 8 re-
covered using occlusion detection. (An enlargement of bottom of Fig. 8(f).) To illustrate the
effect of seeing occluded points, at the end of the sequence occlusion detection was turned
off and the sequence reversed. The computed camera rapidly spun out of the scene.

5 Conclusions
This paper has shown that the performance of a real-time structure from motion algorithm
can be improved by preferentially selecting points for matching using a simple visibility
measure. It was found that sorting and selecting features within image regions, and requiring
points to be drawn from all regions, improved tracking stability.

Two methods of detecting occlusion have been explored: the automatic recognition and
pose initialization of 3D polyhedral objects within the 3D point map, and the growth of
planar surfaces from the points themselves. The latter holds greater promise for general
scenes.
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