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Many recent keypoint detectors [3, 4] associate a local scale (for multi-
scale detectors) or even a full affine frame (for affine-invariant detectors)
to each detected keypoint. Conventional epipolar geometry [2] only con-
strains the relative positions of corresponding keypoints, not their relative
scales. We present an enhanced epipolar constraint that exploits both po-
sitions and scales, thus making correspondence search 2-4 times more
accurate in practice.

The method works as follows:
• encode multiscale keypoints as image ellipses;

• invoke the ‘Kruppa constraints’ that link corresponding ellipses [2];

• project to the “epipolar pencil” (the 1-D family of epipolar lines) to
get reduced constraints linking 1-D quadratic forms on the pencil;

• enforce a scale-sensitive (angular position, angular width) error model
by a well-chosen algebraic transformation of this representation.

Figure 1 illustrates the projection process. The 2×3 matrices B,B′ gener-
ating the projections onto the epipolar pencil are extracted from the singu-
lar value decomposition of the fundamental matrix [2] via F = USV> =
F = B>

(
0 1
−1 0

)
B′, whence B ≡ (u2,−u1)> and B′ ≡ (S11 v1,S22 v2)>.

Possibly-corresponding pairs of multiscale keypoints are represented as
image ellipses – 3×3 symmetric dual-form conic matrices q, q′ – and
projected onto the epipolar pencil by BqB> and B′q′B′>. The reduced
Kruppa constraints say that if the ellipses correspond, these two symmet-
ric 2×2 matrices agree up to scale. Algebraically, this turns out to provide
a strong constraint on the correspondence of keypoint centres, but only a
weak second order one on the correspondence of their scales. To work
around this, we algebraically transform the constraint to the following
(keypoint position, keypoint scale) “normalized distance” model:

d
θ̄
≡ sin2 2(θ̄−θ̄ ′)

sin2 δθ+sin2 δθ
′ = (pq′−q p′)2

1−(r+r′)/2 (1)

dδθ ≡
(

sinδθ

sinδθ
′

)k
+
(

sinδθ
′

sinδθ

)k
−2 =

(
1−r
1−r′

)k/2
+
(

1−r′
1−r

)k/2
−2 (2)

Here, (p,q,r) and (p′,q′,r′) (with scaling to p2 +q2 = 1) linearly encode
the 3 independent entries of the matrices BqB> and B′q′B′>, and (θ̄ ,δθ)
and (θ̄ ′,δθ

′) are corresponding mean angle, angular width representa-
tions (with angles measured in projective coordinates). The above forms
have appropriate small and large angle limits and close relationships to
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Figure 1: The projection of a 3D quadric to two image conics, evaluation
of the pair of epipolar lines tangent to each conic, then further projection
of the conics and their epipolar lines onto the epipolar pencil via 2×3
epipolar projectors B,B′. The reduced Kruppa constraints state that the
two projections agree.

standard statistical error models. The formulae above assume standard
full-epipolar-line matching but the method also handles signed (epipolar
half-line) correspondance and omnidirectional images via a twofold un-
wrapping process based on oriented projective geometry.

The final method is very simple to use – perhaps even simpler than
standard epipolar line search – and it gives good results on both synthetic
images (see fig. 2) and real images (see fig. 3). In both cases, incorporat-
ing the additional scale constraint into the epipolar matching process cuts
the number of false positive matches by a factor of 2–4 over a wide range
of camera geometries and imaging conditions.
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Figure 2: Experiments on synthetic data. Top left: left and right images
of a scene containing random 3D ellipsoids, showing the epipolar lines
tangent to a selected ellipse in the right image, and the corresponding lines
in the left image almost tangent to the corresponding (noise perturbed) left
ellipse. Bottom left: distributions of matching distance values for correct
but noise perturbed correspondences, for (left) mean angle distance

√
d

θ̄
,

and (right) angular spread distance
√

dδθ . The d penalties behave roughly
like χ2

1 variables, i.e. the
√

d plots resemble half-Gaussians (red curves).
Right: scatter plot of

√
dδθ versus

√
d

θ̄
values over a large dataset. The

black ‘*’s are correct matches and the red ‘o’s are incorrect ones. Clearly,
both the mean and the spread terms are useful for distinguishing inliers
from outliers. The combined decision rule d

θ̄
/〈d

θ̄
〉+ dδθ /〈dδθ 〉 reduces

false positives by a factor of about 2–2.5 relative to classical epipolar line
thresholding (here, ‘〈−〉’ denotes empirical means over inliers).
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Figure 3: Experiments with SIFT keypoints on real images from [1]. Left:
The distributions of

√
dθ̄ and

√
dδθ for corresponding features appear to

be exponential with medians m
θ̄
≈ 1.0 and mδθ ≈ 0.6. Middle: Histogram

of numbers of candidate matches satisfying the epipolar correspondence
rule
√

dθ̄ /m
θ̄

< t, for varying thresholds t. Darkness is proportional to
log frequency. Right: The corresponding histogram for the combined
decision rule

√
dθ̄ /m

θ̄
+
√

dδθ /mδθ < t. The combined rule is about 4
times more selective, producing many fewer incorrect correspondences.


