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Abstract

High order features have been proposed to incorporate geometrical information into
the "bag of feature" representation. We propose algorithms to perform fast weakly su-
pervised object categorization and localization with high order features. To this end, we
first use Hough transform method to identify translation and scale invariant high order
features co-occurring in two images. The co-occurrence is used to calculate a kernel for a
SVM. Then, we propose an efficient algorithm for localization with high order features.
A naive way would be to apply the SVM for all possible subwindows, which requires
O(SM) kernel computations per image, where S is the number of support vectors, and M
is the number of possible subwindows in an image. The algorithm collects the weights
of high order features for the subwindows while calculating kernel value for the entire
image, and thus reduces the kernel computations to O(S).

1 Introduction
Object categorization and localization with weakly labeled data have attracted increasing
interest in computer vision. During training, we are only provided with the image level
categories. This greatly reduces the human labeling work, and sometimes may even work
better than supervised models [6]. One of the most important issues to address for object
recognition is the great intra-category variability, such as the positions, scales, or poses.
Especially for weakly supervised learning, in which the locations or scales of the objects are
unknown during training. The model learning must be invariant to variability. In addition,
the models must be discriminative enough to separate different categories.

The "bag of features" (BoF) representation of images [5, 24, 28] has been extremely
popular for object categorization task due to its advantages of great invariance and computa-
tional simplicity. However, the representation discards any geometrical or shape information
of objects, and thus its discriminative power is limited. Many works [3, 7, 16, 22] have
been done to model the spatial information by the locations of the local features or parts
as opposed to the object center. These works have gain great success in supervised object
detection, where the bounding boxes of objects are given. Constellation model [8] represents
the spatial distribution as mutual relationship of the local parts, and therefore can be learned
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Figure 1: Illustration of the weakly supervised localization algorithm with invariant high
order features. The input image is evaluated on the motorcycle classifier (SVM) learned
with weakly labeled data. The images in the top line represent the support vectors with
positive or negative weights. Each ellipse corresponds to a local feature. We show the largest
order feature co-occurring in the input image and each support vector in different colors for
different support vectors.

with weakly labeled data. However, the computation cost is usually large. Exemplar model
[4] models the shapes variantly with Spatial Pyramid Kernel [14]. To learn from weakly
labeled data, it iteratively processes the training images to find the optimal location. Mul-
tiple instance learning [10][23] has been successfully used for weakly supervised learning.
It models images as bags of instances, which are usually segments or sub-windows. These
works usually require iterative processing on the training images to find the positive instance
in a positive bag.

Another extension for improving the BoF representation is to model the mutual geomet-
rical relationship between the local features [17, 19, 27, 29]. High order features (HOFs) are
created to represent a specific number of local features in a particular spatial relationship.
According to the number of local features used, the HOFs are called doublet, triplet, or nth

order features. This type of method can be learned invariantly with weakly labeled data.
However, as the order increases, the number of features increases exponentially to the order.
In [29], the authors proposed an efficient algorithm for calculating the kernels with transla-
tion invariant high order features. The algorithm calculates the kernels for all order features
efficiently in time linear to the number of local features. The kernel calculated is used with
SVMs for object categorization.

In this paper, we extend the HOF idea for object localization. We learn a SVM with
the HOF kernel on the entire images with the image labels. Since the classifier are learned
invariantly, we can backproject the learned weights of the HOFs for localization. For most
detection algorithms that include a SVM with non-linear kernels, the computation can be ex-
pensive, since all possible subwindows must be evaluated. There have been works [12][15]
that use branch and bound algorithm to avoid evaluating every subwindow. We propose an
efficient algorithm for localization with HOFs. The algorithm performs the kernel calcula-
tions for the entire image, and obtain the decision scores for the local patches at the same
time. The decision scores for all possible subwindows can be calculated efficiently from the
scores of the local patches. Thus, it reduces the number of times required for kernel com-
putation from O(SM) to O(S) per image, where S is the number of support vectors, and M
is the number of possible subwindows. The algorithm with HOFs also provides a novel way
for the idea of classifying local patches using its context or spatial configuration. The idea
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has been explored by many other works with various methods[9, 13, 26].
Another contribution of the paper is that we propose an algorithm which can easily add

more invariance to the HOF kernel [29]. The algorithm can be viewed as a generalized
version of the algorithm in [29]. Our extension is based on the observation that the process
for identifying the co-occurring translation invariant high order features of two images in [29]
is analogous to the process of the generalized Hough Transform [1]. The Hough transform
allows a pair of features from two images to vote for their transformation parameters. Thus
we can easily define any transformation invariance we want to introduce, such as translation,
scale, or rotation. Note that in [29], the authors have also given a suggested algorithm for
dealing with scale invariance (without evaluation in experiments). This paper provides a
more general and formulated algorithm for dealing with invariance for HOFs.

Fig. 1 illustrates the idea of weakly supervised localization with HOFs. A test image
is evaluated by calculating the kernel values with each support vector of the SVM learned
during training. Because of the invariance of the HOFs, objects that occur in different posi-
tions and at different scales in the training images can contribute properly to the scores for
localization, although the training images are not aligned, and the scale is not normalized.

2 Learning

We describe the invariant high order feature kernel for recognition in this section. The algo-
rithm can be viewed as a generalized version of [29] by adding more invariance to the high
order features. To simplify the explanation, we only consider the transformation of scale and
translation. But the algorithm can accommodate any linear transformations, such as rotation
or affine.

An image I is represented as a collection of local patches, I = {p1, ..., pm}. Each patch
is represented with its visual word assignment w, region size s and location x,y. pi =
(wi,si,xi,yi).

2.1 Invariant High Order Features

An nth order feature f n is composed of n visual words in a particular mutual scale and spatial
relationship. If an nth order feature can be created as a translation or/and scale transformation
of the n words of the other nth order feature, the two high order features are defined as the
same feature. Fig. 2 gives an example of two occurrences of a 3rd order feature on two
images with position and scale changes.

Specifically, the occurrence of a particular nth order feature f n in an image I is n patches
Pn = (p1, p2, ..., pn) from the image. Let (x̂, ŷ, ŝ) denote a transformation of the points, with
(x̂, ŷ) denoting translation, and ŝ denoting scale. Let Pn′ denote another n patches. We say
Pn and Pn′ are the occurrences of the same features if and only if for ∀i, they satisfy the
following conditions: 1) the same word assignment: wi = w′i; 2) The same transformation:
xi = x′i× ŝ+ x̂, yi = ŝy′i + ŷ, si = ŝs′i.

The length of the feature vector is exponential to the order n. The nth order feature space
is V nXn−1Y n−1Sn−1, where V is the vocabulary size of visual words, X and Y define the
image space, and S represents the scales.
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Figure 2: Illustration of the algorithm for finding co-occurrences of invariant high order
features. Each circle in the images is a local patch. The different colors represents different
visual word assignments. The size of the circle represents the scale of the patch. A triangle
corresponds to a vote generated by a pair of patches.

2.2 Co-occurrence with the Hough Transform
We used the idea of the Generalized Hough Transform [1] for identifying the co-occurring
high order features of two images. As illustrated in Fig. 2, For each pair of patches (pi, p′i)
with the same visual word assignments (wi = w′i) from the two images I and I′, we make a
vote on the transformation parameter space (x̂, ŷ, ŝ) with the following values: (xi− si

s′i
x′i, yi−

si
s′i

y′i, log( si
s′i
)). If we have n votes at a particular point on the parameter space, we have n pair

of patches with the same transformation (x̂, ŷ, ŝ). From the definition for high order features,
we have a co-occurrence of a certain nth order feature. In addition, it also means that we have
n choose k,

(n
k

)
number of kth order features for any k < n. To allow for some deformation,

we quantize the parameter space to cells. The transformations (x̂, ŷ, ŝ) in the same cell will
be treated as the same transformations. In the example of Fig. 2, at scale ŝ = 1/2, we have
a co-occurring 3rd order feature, and

(3
2

)
= 3 co-occurrences of 2nd order features. Thus, to

compute the number of co-occurring nth order features of two images, we can simply count
from the parameter space.

2.3 High Order Feature Kernel
The nth order feature vector φ n(I) of image I is defined as a vector cascading the feature
values of all nth order features defined in section 2.1. The feature value of a feature f n

i is
defined as the number of occurrences of f n

i , which fills in the ith coordinate of φ n(I). The
kernel Kn calculates the inner product of the nth order feature vectors of two images I and
I’. In [29], the authors proved that the kernel value of two images is equal to the number of
the co-occurrences of all nth order features. We use the algorithm we proposed in section 2.2
to count the co-occurrences of all nth order features efficiently. Specifically, to calculate the
nth order kernel Kn, we first performing the Hough transform of two images. Then for each
bin on the parameter space with N votes (N ≥ n), we increment the kernel value Kn with N
choose n,

(N
n

)
. For normalization, we use L1-norm.

K̂n(I, I′) = Kn(I, I′)/(
(
|I|
n

)(
|I′|
n

)
) (1)

where |I| and |I′| are the number of patches in images I and I′. In practise, a combined kernel
K∗n which combines the kernels from 1 to n can be used: K∗n (I, I

′) =∑
n
i=1 µ1−iK̂n(I, I′), where
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µ is a constant value in (0,1).
Algorithm 1: Compute kernels Kn(I, It) and Kn(In

pi
, It)

Input: Two images I = p1, ..., p|I| and It
Output: Kn(I, It) and Kn(I, It) for i = 1, ..., |I|
Algorithm:
1. Perform the Generalized Hough Transform for images I and It .

Record which patch pk from I contributes to each vote vk.
2. On the quantized parameter space, for each bin that has N(N ≥ n) votes

(a) Increment Kn(I, It) with N choose n,
(N

n

)
.

(b) For each vote vk, we increment Kn(In
pk
, It) for the contributing patch pk

3 Localization
The goal of weakly supervised localization is to discover and localize the parts of images (the
objects of interest) that are visually common among the same categories and discriminative
among different categories. We set our goal for localization as predicting a bounding box
around the objects of interest. This has also been the standard scheme for supervised object
detection. We learn a discriminative classifier (SVM) on the whole images with the high
order kernel. Because of the invariance of the high order features (HOFs), we can utilize the
weights learned for the HOFs for localization. The weights imply the discrimination of the
features. The subwindows with more positive discriminative features would be more likely
to be those we want to locate.

The general idea for our localization algorithm is to first assign scores to the local patches
of a test image with an efficient kernel algorithm. The scores are defined in the way that the
SVM decision score for a subwindow in the test image can be calculated as the summation
of the scores of the local patches inside the window. Thus after obtaining the scores for the
local patches, we can easily get the subwindow with the optimal score.

3.1 Local Patch Classification
We start by explaining how to obtain scores for local patches. The score of a local patch
indicates whether the patch match to the object of interest, or the background. We make the
decision for a local patch pi based on all n patches from image I including pi, which we
denote as In

pi
= {Pn ∈ I|pi ∈ Pn}. We denote the weights for the nth order features learned

by the SVM as v, and the bias term of SVM as b. The decision score of a local patch pi
would be the sum of the weights of the nth order features in I including pi: Score(pi) =
vT φ n(In

pi
) + b, where φ n(In

pi
) is the n order feature vector of In

pi
. When n is large, it is

impractical to enumerate the weights v for all high order features. The kernel methods are
used. Let α be the coefficients of the support vectors learned by the SVM. A support vector
is a certain image in the training set.

Score(pi) = vT
φ

n(In
pi
)+b = ∑t αtKn(In

pi
, It)+b (2)

where Kn is the high order kernel defined in 2.3, and It is the tth support vector.
The kernel value Kn(In

pi
, It) is equal to the number of co-occurring nth order features of

In
pi

and It . We can compute this value from the parameter space after the Hough transform
is performed on the whole image I with It . Algorithm 1 gives the algorithm that calculates
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the kernel values for every patch pi and the whole image I at the same time. The algorithm
is illustrated in Fig. 2. The key idea is that when we have N votes in a bin on the parameter
space, one of which is contributed by pi from I (with a patch from Is), we have

(N−1
n−1

)
number

of co-occurring nth order features of Is and I including pi.
The computational complexity for Algorithm 1 is the same as calculating the kernel for

an image, which is in practise linear to the number of patches in an image, O(|I|). Therefore,
with the same number of kernel computations for classifying an image (O(S), where S is the
number of support vectors), we also computed the scores for all local patches.

3.2 Subwindow Classification
We classify each subwindow B as a bounding box of the object of interest or not. We define
the nth order feature vector φ n(B) of B as the number of occurrences of the features. When
counting the occurrences of a nth order feature, we count 1 when all n patches of the feature
are inside B, otherwise, we count l/n, where l is the number of patches inside B. Therefore, to
make the decision for a subwindow, we also consider the nth order features that represent the
context surrounding it. The value we give to a context feature is the ratio of the patches inside
the window. Many works [2, 11, 25] have shown that context can improve the detection
performance.

The decision score of B can be calculated as follows.

Score(B) = ∑t αtK(B, It) = vT φ n(B) (3)

where α is the SVM coefficients of the support vectors, and v is the weights for the features.
Combining with equation 2, it is easy to prove that the above equation can be calculated as
the sum of the scores of the local patches inside B.

Score(B) =
1
n ∑

pi∈B
(Score(pi)−b)+b (4)

Finding the optimal subwindow
From the derivation above, after assigning the scores to every patch on an image with

the algorithm in Section 3.1, the process of finding the optimal subwindow would be the
same as the process for a linear SVM with the bag of words features. While the weights of
the corresponding words learned by the SVM in the bag of words model would be replaced
by the scores of the patches in our algorithm. Therefore, we can efficiently compute the
decision scores of all possible subwindows with integral image. The efficient subwindow
search algorithm can also be used to find the optimal subwindow. We can use the same
upper bound designed for bag of words with linear SVM in the paper [12].

3.3 Normalization
Similar to the kernel for categorization (Section 2.3), we can use L1-norm for normalization.
We denote the score for a subwindow B with the normalized kernel as ˆScore(B).

ˆScore(B) = ∑
t

αt K̂n(B, It) = ∑
t

αt
Kn(B, It)

∑k:Pn
k ∈I lk

(|It |
n

) (5)

where lk is the number of patches of Pn
k inside window B, and ∑k:Pn

k ∈I lk is the L1-norm of
the feature vector for subwindow B defined in Section 3.2. We define the score for a patch pi
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as ˜Score(pi) = ∑t αtKn(In
pi
, It)/

(|It |
n

)
. This can be calculated with Algorithm 1 by modifying

the Step 2(b). With this score for local patches, the normalized score for subwindow B can
be easily calculated with the following equation.

ˆScore(B) =
1
n ∑pi∈B ˜Score(pi)

∑k:Pn
k ∈I lk

=
∑pi∈B ˜Score(pi)

|B|
(|I|−1

n−1

) (6)

where |B| is the number of patches inside B. The values |B| for all subwindows B in
an image can also be calculated with integral image. However, unlike the non-normalized
case, the efficient subwindow search algorithm does not work directly with the upper bound
designed for the bag of words model.

4 Experiments
We evaluate the proposed approach on several public datasets, including the Pascal VOC
2005 [6], Graz-01, Graz-02 [24], and Caltech-4 [8]. For all the datasets, we train the clas-
sifiers with only image level labels. We would like to verify two things: 1) Adding more
invariance to the high order features can improve the recognition performance. 2) The clas-
sifier with high order kernels which is learned with only weakly labeled data can be used to
localize the objects on new test images.

For all the datasets, we use harris-hessian interest region detectors [21] and SIFT feature
descriptor [20]. We build the vocabulary with K-means. We use K = 1000 for Pascal (the
same as the winner in the challenge [28]), and K = 500 for Graz, and Caltech datasets.
We quantize the parameter space with step size 16px for all datasets. Translation and scale
invariance are considered during the experiments.

4.1 Categorization
We do experiments on the second test dataset (difficult one) of Pascal 2005 dataset. In table
1(a), we compare the equal error rates of our method with the best score at the competi-
tion [28], and other works after the competition [18]. The best score at the competition is
achieved with a χ2-kernel on bag of words representation applied to SVM. The PDK [18] im-
proves the bag of words model by modeling the distances of pair of words. We implemented
the scale variant high order kernels in [29] (variant HOF) with exact the same settings as
ours. By modeling scale invariance, we outperformed the variant HOF by 4.4%, since the
datasets include objects with great variability in scales. We outperform the bag of words
model and the models (PDK) that only consider the distances of words by 5.9% and 5.5%
respectively.

We further compare our approach with pervious works on Graz-01 and Graz-02 datasets.
We adopt the same training and testing split as in [24]. On the Graz-01 dataset, we compare
the scale variant HOF results reported in [29]. Table 1 (b) compare the EER of each category
with previous works. We outperform other methods which use bag of words [24], or pair of
words [17][18].

4.2 Localization
We first evaluate our localization algorithm on the Caltech-4 dataset [8] with the categories
that have more rigid shapes: faces, motorbikes and airplanes. On this dataset, many previous
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Table 1: Equal Error Rate (%) on the Pascal 05 (test2) dataset (a), and the Graz dataset (b)
Winner Variant Invariant

BoW [28] HOF [29]  HOF 
Motor 79.8 76.9 82.1 83.8
Bike 72.8 70.1 74.3 78.0
Person 71.9 72.5 73.0 73.5
Car 72.0 78.4 77.7 84.8
Ave 74.1 74.5 76.8 80.0

Class PDK [18] Variant Invariant
HOF[26]  HOF 

Bicycle 86.5 84.0 95.0 94.0 96.0
Person 80.8 82.0 88.0 86.0 90.0
Bike 77.8 92.0 86.7 n/a 88.0
Person 81.2 86.0 86.7 n/a 92.0
Car 70.5 n/a 74.7 n/a 80.3

Pair[17] PDK[18]

Graz01

Graz02

Dataset Class BoW [24]

(a) Pascal (b) Graz

CVPR 
1971 
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1971 
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model (𝑛𝑛 = 1) in our implementation 

5.2. Localization 
We first evaluate our localization algorithm on the 

Caltech-4 dataset [6] with the categories that have more 
rigid shapes: faces, motorbikes and airplanes. We use the 
classifier trained on the whole images of the training data, 
and evaluate the localization results on the test data. Since 
there is no much scale variance in this dataset, we calculate 
the decision scores for all subwindows of a fixed size for 
each category. We detect the window with the maximum 
score of each image by assuming there is only one object 
per image. We evaluate our results with the multi-class 
settings, where the detections from all other three 
categories are false positives (leopards are also treated as 
negative). 

Figure 5 illustrates the decision scores made by the face 
classifier on each local patch of images. The probability 
maps are created as follows. We first convert the decision 
score as calculated in Section 4.1 to probability scores by  
1/(1 + exp⁡(𝐴𝐴 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑖𝑖) + 𝐵𝐵) , where 𝐴𝐴  and 𝐵𝐵  are 
learned on the training set as in the Libsvm implementation 
[3]. For each pixel, we average the probability estimation of 
all regions including this pixel. The regions are modeled as 
rectangles of the scale of the feature. For bag of words 
model, high probability appears on both the objects, 
backgrounds and also other objects, since the same word 
may appear many locations. As we increase the order of the 
features, high probability is much more likely to appear on 
the objects (faces) than the backgrounds or other objects. 
This is because the high order features are more 
discriminative and do not share so much between different 
categories and the backgrounds. Moreover, when we make 
the decision of each patch, we actually consider the 
interaction of this patch with all other patches in the image. 
Figure 7 (bottom right) shows the local patches which got 
highest probabilities (most discriminative patches) when 
𝑛𝑛 = 3. For this figure, results are on the classifier of the 
same category as the object in the image (eg. face images 
are evaluated on the face classifier).   

Figure 7 presents the precision-recall curve of each 
category. We use the same evaluation scheme defined for 
detection task of the Pascal challenge. Although the 
histogram of bag of words model did reasonably well for 
the classification task (as in Table 5), it is not 
discriminative enough for the localization task when 
classifiers are learned with weakly labeled data, except for 
the motorcycle category, where most motorcycles cover the 
entire image. However, the model of high order features 
achieves good performance for localization even though 
the classifier is learned on the whole images with only 
weakly labeled data. The Average Precsion scores (as 
defined in Pascal challenge) using 3rd order features are 
0.884, 0.883, 0.903 for airplane, face and motorbike 

respectively. 
Scale Invariant Localization 
We further evaluate the proposed algorithm on the 

motorcycle category of Pascal 2005 dataset, which include 
more scale variance. All detections on images of other 
categories and the background are treated as false positives. 
We test on the test1 set (easier one). There are 689 images, 
among which 220 motorcycles are presented. Again, a 
binary classifier is trained on the entire images of train and 
validation dataset (649 images).  

For scale invariance, we make decisions for subwindows 
of different scales with a fixed aspect ratio. It is worth 
noting that the algorithm which performs scale variant 
detection after rescaling the image into different sizes does 

Figure 5: Probability maps images evaluated on the face detector with 1 to 
3 order features. Dark red means higher probability and dark blue means 
lower probability. Ideally, we should get high probability only on faces and 
low probability on background and other categories. 

Image                       BoW                     2nd order              3rd Order 

Figure 7: Precision-recall curves for detection task on Caltech-4 
dataset. We compare bag of words (green), 2nd order feature (red), 
and 3rd order feature (green). Comparing to the ROC curves 
present in [6], which uses a constellation model, we got better 
performance when using the high order features. The bottom right 
of the figure shows most discriminative patches of example 
images (top 10 for faces and airplanes, top 20 for motorcycles) 

.                Airplane                                               Face                

.              Motorbike                                                             

(a) (b)
Figure 3: (a) Posterior maps for the face detector with 1 to 3 order features. Dark red means
higher scores and dark blue means lower scores. Ideally, we should get high scores only on
faces and low probability on background and other categories (motorbikes). (b) The patches
(ellipses) with top scores obtained by the face detector (top images), the motorbike detector
(middle), and the airplane detector (bottom).

works [8][27], including the bag of words model, can already achieve nearly 99% accuracy
for object categorization. However the weakly supervised localization task on this dataset
is not as perfect [8]. We use the classifier trained on the whole images of the training data,
and evaluate the localization results on the test data. Since there is no much scale variance
in this dataset, we calculate the decision scores for all subwindows of a fixed size for each
category. We evaluate our results with the multi-class settings, where the detections from all
other three categories (including the Leopard category) are false positives.

Fig. 3(a) illustrates the decision scores made by the face classifier on each local patch
of images. The figures are obtained as follows. For each pixel, we average the scores of
all regions including this pixel. The regions are modeled as rectangles. For bag of words
model, high scores appear on both the objects, backgrounds and also other objects, since the
same word may appear at many locations. As we increase the order of the features, high
scores are much more likely to appear on the objects (faces). This is because the high order
features are more discriminative and do not share so much between different categories and
the backgrounds. Moreover, when we make the decision of each patch, we actually consider
the interaction of this patch with all other patches in the image. Fig. 3 (b) shows the local
patches which got highest scores with 3rd order features.

Fig. 4 presents the precision-recall curve of each category. We use the same evaluation
scheme defined for detection task of the Pascal challenge. The bag of words model is not dis-
criminative enough for the localization task when classifiers are learned with weakly labeled
data, except the motorcycle category, for which most motorcycles cover the entire image.
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Face Airplane Motorbike

Figure 4: Precision-recall curves for detection task on Caltech-4 dataset. We compare bag
of words (green), 2nd order feature (red), and 3rd order feature (green). Comparing to the
Precision-recall curves present in [8], which uses a constellation model, we got better per-
formance when using the high order features.

Figure 5: Precision-recall curves on the test1 set of Pascal 2005 for the motorcycle category
(vs. all). Note that our detector is trained with only weakly labeled data. Example detections
(green) and false positives (red) with high scores are shown in the right images

The model of high order features achieves much better performance. The Average Precision
scores (as defined in Pascal challenge) using the 3rd order features are 0.884, 0.883, 0.903
for airplane, face and motorbike respectively.

Scale Invariant Localization
We further evaluate the proposed algorithm on the motorcycle category of Pascal 2005

dataset, which include more scale variance than the Caltech dataset. All detections on images
of other categories and the background are treated as false positives. We test on the test1 set.
There are 689 images, among which 220 motorcycles are presented.

For scale invariance, we make decisions for subwindows of different scales with a fixed
aspect ratio. It is worth noting that the algorithm which performs scale variant detection after
rescaling the image into different sizes does not work, because objects in training images
appear in different scales, and we do not know the scales during training. Therefore, the
models or features must be able to do scale invariant matching.

Fig. 5 shows the precision recall curves which compare the bag of words model, our
model, and the supervised winner in the challenge. The average precision with the scale
invariant detection model is 0.872, which is close to the winner in the challenge (AP: 0.886)
where model is trained using bounding boxes.

Computational time
On a Core 2 Duo 2.0G machine, it takes around 1ms for a kernel calculation of two

images. Except feature extraction, localization takes around 0.1 second per image (for eval-
uating all subwindows) on the Caltech-4 dataset. The implementation is done in Matlab with
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some C helps.

5 Conclusion
We proposed efficient algorithms for weakly supervised object categorization and localiza-
tion with the high order features. A classifier is trained on the whole images with invariant
high order features. The learned weights of the features are backprojected for localization.
An efficient algorithm is proposed for localization, which avoid calculating kernel values for
all possible windows and consider context of the window at the same time. For future work,
we plan to apply our localization algorithm for supervised detection task.
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