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Figure 1: Algorithm overview. (a) The input point cloud is encoded in a voxel
data structure; (b) planar patches are detected and modeled; (c) planar patches are
classified using local features as well as contextual relationships between patches
(magenta = ceilings, yellow = floors, blue = walls, green = clutter); and (d) patch
boundaries are re-estimated and clutter surfaces are removed.

In this paper, we present a novel approach to transform the raw 3D

point cloud meansured from laser scanners into a semantic building model.

In industry practice, this transformation is currently conducted manually
— a laborious, time-consuming, and error-prone process. Methods to re-
liably automate this transformation would be a tremendous benefit to the
field and would likely speed the adoption of laser scanning methods for
surveying the as-built conditions of facilities.

The primary challenge in the classification of structural components
is distinguishing relevant objects from clutter. The distinction can be dif-
ficult or impossible if objects are considered in isolation, especially for
highly occluded data sets. In our situation, contextual information could
help to recognize objects of interest and to distinguish them from clutter
through the relationships between the target surface and other nearby sur-
faces. For example, if a surface is bounded on the sides by walls and is
adjacent to a floor on the bottom and a ceiling on the top, it is more likely
to be a wall than clutter, independently of the shape or size of that surface.
In this way, the interpretation of multiple surfaces can mutually support
one another to create a globally consistent labeling.

The concept of using context to model building interiors has been
studied by other researchers [3, 4]. Most previous approaches rely on
hand-coded rules, such as “walls are vertical and meet at 90° angles with
floors. Such rules are usually brittle and break down when faced with
noisy measurements or new environments. Our algorithm automatically
learns which rules are important based on training data so that more dis-
criminative features are weighted more during the classification.

Fig. 1 shows the major steps of our approach. We begin with input
data of a point cloud representing a room or a collection of rooms. First,
we encode the point cloud into a voxel structure to minimize the variation
in point density throughout the data (fig. 1 (a)). Next, we detect planar
patches by grouping neighboring points together using a region-growing
method similar to [5]. We model the patch boundaries using its convex
hull (fig. 1 (b)). We use these planar patches as the input to our classi-
fication algorithm. The algorithm uses contextual relationships as well
as local features to label the patches according to functional categories,
such as wall, floor, ceiling, and clutter (fig. 1 (c)). Finally, we remove
clutter patches from the scene and re-estimate the patch boundaries by
intersecting adjacent components (fig. 1 (d)).

In classifying planar patches, we use a Conditional Random Field
(CRF) model. A graph G = (V, E) is produced by connecting each planar

patch with its 4 nearest neighbors. Nearest neighbors are found by mea-
suring the minimum Euclidean distance between patches. Our goal is to
find a set of labels that maximizes conditional likelihood given in eq. (1).
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Z(x,0,m) is known as the partition function. The local feature function,
A(yi,x;), encapsulates knowledge about the patches in isolation. The con-
textual feature function, I(y;,y;,x;,X;), contains the information about a
patch’s neighborhood configuration.

The local feature function A(y;,x;) is modeled as a YX_, 8(v; =k)07 g(x;)

where g(x;) is a vector of features derived from patch x; (such as area and
orientation) plus a bias term of 1. The parameter & controls the relative
weight of local feature function versus the contextual feature function, and
it is chosen during cross-validation. K is the number of class labels any
node can take on, and § is the Kronecker delta function. The parameter
vector 6 allows a class-specific weighting for each local feature.

For modeling contextual features, we define R pairwise relations be-
tween two planar patches. We encode a patch’s neighborhood configu-
ration with a matrix H, where the entry in the ¥ row and " column,
i (vi,Xi,x;) is 1 if y; = k and ! relationship is satisfied between x;
and x;. Otherwise, iy, =0, where r € {1,...,R}. Then H is converted
into a vector & by concatenating its columns. The contextual feature
weighting vector @y is analogous to 6 above. The contextual feature
function (y;,y;,x;,x;) follows as Y& | 8(yvi = k)] h(y;,xi,x;)+6(y; =
k)l h(yi,xi,xj)

In our work, we choose to learn the parameters by maximizing the
pseudo-likelihood [1] due to its simplicity and intractability of the original
objective function (eq. 1). The log pseudo-likelihood /p; for our model
can be written as Y;(—InZ; +A(yi, x;) + ¥ jen, 1 (vi,yj,%i,x;)) where Z; =
YK exp{A(k,x;)+ Yjen, I(k,yj,xi,xj)}, and N; gives the indices of x;’s
neighbors in G. From the properties of convex functions, we can de-
rive that the log pseudo-likelihood function is concave, which indicates
a global optimal solution. Optimal parameters 6 and ® are derived from
gradient ascent.

During inference, we use a local search algorithm, Iterated Condi-
tional Modes (ICM) [2]. In each iteration, ICM maximizes the local con-
ditional (posterior) likelihood. This procedure iterates until convergence.
This is a reasonable alternate objective to optimize since the parameters
0 and o are learned from maximizing the product of local conditional
likelihood.

We compare the results of our context-based CRF algorithm with a
context-free method based on L, norm regularized Logistic Regression
(RLR) performing on real world data. We find that using certain contex-
tual information along with local features improves the classification rate
from 84% to 90%.
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