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Abstract

Mapping planar structure in vision-based SLAM can increase robustness and signifi-
cantly improve efficiency of map representation. However, previous systems have imple-
mented planar mapping as an auxiliary process on top of point based mapping, leading
to delayed initialisation and increased overhead. We address this by introducing unified
mapping based on a common parameterization in which both planar and point features
are mapped directly, as and when appropriate according to scene structure. Specifically,
no distinction is made between points and planes at initialisation - the ’best’ representa-
tion emerges after matching has progressed, minimizing delay and making the detection
of planar structure implicit in the method. We demonstrate the approach within an EKF
monocular SLAM system and show its potential for efficient and robust mapping over
large areas for both indoor and outdoor environments.

1 Introduction

This paper is concerned with efficient map representation in real-time simultaneous local-
isation and mapping using a single camera (monocular SLAM). That is, we are interested
in tracking the 6-D pose of an agile camera (typically hand-held), whilst simultaneously
mapping the 3-D structure of the surrounding scene, all in real-time. Rapid advances in
monocular SLAM over recent years has yielded several systems which demonstrate impres-
sive performance using a variety of processing frameworks [1, 3, 5, 6, 7, 8, 9, 10, 13, 16],
with robust operation in the face of challenging motions and environments, including the
ability to loop close and re-localise a lost camera .

However, the majority of these systems are based on mapping single, spatially distinct
visual features, such as 3-D points or edgelets, with no encoded relationship between them.
Although this approach has been effective, it remains an inefficient representation when
higher order structure is present in a scene - features lying on such structures can be more
efficiently parameterised in terms of those structures, hence reducing map size, memory re-
quirements and computational load. This becomes important when attempting to increase
map size, either for greater physical coverage or to increase map density. Planar structures in
particular are prevalent in man-made environments and as previously noted in the structure
from motion literature, this can be exploited in order to minimise redundancy of representa-
tion [2, 23]. The focus of the work described here is to do so in the context of a real-time
filter-based visual SLAM algorithm.

© 2010. The copyright of this document resides with its authors. BMVC 2010 doi:10.5244/C.24.43
It may be distributed unchanged freely in print or electronic forms.




2 CARRANZA, CALWAY: UNIFYING PLANAR AND POINT MAPPING

Size: 74

(a) (b) (©)

Figure 1: Planar features initialized with the proposed framework. (a) 3-D View of the world.
(b) Projection of planar bounding box on the camera view. (c) 2-D Points Measurements in
the Camera View, note measurements with a common plane are linked with a line.

As we summarise below, the use of planar structure in visual SLAM is not new. However,
to date it has been divorced from single feature mapping, being regarded either as an add-on
to supplement a point based map [11, 12, 14] or as an alternative to single feature mapping,
as in [18, 21]. This is clearly unsatisfactory - ideally, planar mapping should sit alongside
single feature mapping within a unified framework, with each being utilised as and when
appropriate. To address this, we introduce a novel framework in which the mapping of
points and planes is carried out using a common parameterisation, enabling either point
or planar representations to emerge according to the underlying scene structure. This is
achieved by also using common measurements - planes are defined in terms of sets of point
features which are grown recursively from a common seed feature as mapping proceeds, with
seeds that are unable to grow defaulting to single features. The approach has two important
benefits: first, the initialisation of planar structure is not delayed, as it is in previous methods
which require either the convergence of point features or the prior segmentation of planar
regions; second, the detection of planar structure in the scene is implicit in the method,
avoiding the need for a separate detection process. This second property is important, since
it means that the algorithm only takes advantage of planar structure when it is safe to do
so within the operation of the SLAM, hence avoiding the imposition of unrealistic planar
constraints which could lead to inconsistency and instability.

We illustrate the technique within a standard extended Kalman filter (EKF) monocular
SLAM algorithm, although we would emphasise that the approach could be adapted to other
SLAM implementations - it is the principles and advantages of a unified mapping framework
that we wish to demonstrate here. For the common representation of points and planes we
utilise an adaptation of the inverse depth parameterisation (IDP) [17] and use a mix of corre-
lation and descriptor based matching for the EKF measurements. In the following, Section
2 provides an overview of the method and implementation details are given in Section 3.
Experimental results for both indoor (as shown in Fig. 1) and outdoor environments are then
presented in Section 4. Both illustrate the potential of the method for efficient map repre-
sentation, producing significant reductions in EKF state size compared with that for a points
only approach whilst retaining robust operation, including camera relocalisation.

1.1 Related Work

Work on using planar structure in visual SLAM can be split into two categories: methods that
extract planes from previously mapped points and those that map planar structure directly. In
the former category, Gee et al. [11, 12] detect the presence of planar structure within sets of
mapped points in an EKF framework and re-parameterise the filter state in order to exploit
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Figure 2: Undelayed plane intialisation by using the Inverse Depth Plane Parameterization
and a 2-D point based measurement model.

the planarity constraint. This was extended by Martinez-Carranza and Calway [15], who
combine appearance information with geometry to detect physical planes. They also demon-
strate the use of adaptive measurement via the planar constraint to increase map density [14],
analogous to the use of "hallucinated correspondences’ in [23]. An alternative approach is
taken by Pietsch [18], who demonstrates direct mapping of planar structure within an itera-
tive EKF based on pixel alignment, albeit with prior knowledge of plane location and extent.
Similarly, Silveira et al. [22] also use an iterative alignment method to map planar structure
within segmented regions using an optimisation framework for SLAM. By way of contrast
to both of the above categories, Castle et al. [4] use prior knowledge of plane appearance
gained off-line to detect the presence of known planes and hence insert planar geometry into
an EKF state to constrain feature matching.

2 Unifying Point and Planar Mapping

We begin by giving an overview of the unified feature mapping which is the main contribu-
tion. We assume that we have a core SLAM algorithm, which in our case is an EKF, and that
for each frame this seeks to initialise new features in regions not covered by the current map.
Since our measurements for both points and planes will be based on matching local patches,
potential features are those corresponding to patches with high local saliency.

Our common feature parameterisation has three components: the 6-D pose of a reference
camera which defines a local coordinate system; the depth w.r.t. the reference camera of a
seed 3-D point feature; and a 3-D normal vector. The mapping process starts by initialising
the seed point feature within the local coordinate system and in subsequent frames seeks to
initialise coplanar point features to associate with the seed and so estimate the normal vector.
This process continues in order to ‘grow’ a planar feature within the map. If coplanar points
cannot be found then the feature automatically defaults to a point feature corresponding to the
original seed point. Hence no distinction is made between points or planes at initialisation,
both are dealt with in a common framework.
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A simple example illustrating the process is shown in Fig. 2. This shows a scene consist-
ing of 5 points (green squares), four of which lie on a plane. First, the seed point is initialised
corresponding to a salient patch (red dots) and defined within the local coordinate system
given by the pose of a reference camera. As shown in Fig. 2a, we have a mean estimate for
the seed (yellow square), with associated covariance indicating the depth uncertainty, and
a large isotropic uncertainty on the normal vector since at this stage it is undetermined. In
the next frame, we take a measurement for the seed point and update its position estimate as
shown in Fig. 2b.

With a successful update, the seed becomes ‘ready to grow’ and neighbouring salient
patches in subsequent frames are used to initialise associated feature points assuming a
coplanar constraint as shown in Fig. 2c. Successful measurement of these and the seed
in subsequent frames then allows an update of the normal and a corresponding reduction in
its uncertainty as shown in Fig. 2d. Further points can then be initialised and added to the
growing planar structure according to the coplanar constraint as shown in Fig. 2e, with the
reference camera pose, seed position and normal vector then being updated with each set of
new measurements.

Note that the size of the feature representation remains fixed throughout the above pro-
cess, enabling point features to be parameterised in term of their common planar structure.
Note also, as shown in Fig. 2f, any inconsistent measurements enable outlier point features
to be rejected from the planar feature. As noted earlier, in the event that no coplanar points
can associated with the seed, then the latter defaults to a single point feature which after con-
vergence can be converted to a standard 3-D parameterisation as in existing systems [5, 6, 7].

3 Implementation

In this section we outline the implementation of the above mapping process defined within an
EKF framework. Much of the latter mirrors that used in previous monocular SLAM systems,
see e.g. [7], and thus we only provide a summary of its main components.

3.1 EKF State Representation

The state in the EKF is defined in terms of the current 6-D pose of the camera (3-D position
and 3-D orientation) and a representation of the scene map. We denote this by x with its
associated covariance P, i.e.

ey

P P
— T _ vV vm
X = [v,m] P= { Po, Pun }

where v = [r", a)w,vw,ww}T defines the camera position r", its orientation in axis angles
®" and associated velocities v and w", all defined in the world coordinate system. The
map m = [mj,my,... ,mn]T is defined in terms of a set of generalised features m;, which in
our case is a mix of planar structures and single point features, defined in terms of the new
common feature parameterisation (or standard 3-D parameterisation for converged single
points).

Our common feature parameterisation is an adaptation of the Inverse Depth Parameteri-
sation (IDP) which is now used routinely for single feature initialisation [17] and is similar
in form to that used in [15, 18]. We denote it as the Inverse Depth Planar Parameterization
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Figure 3: (a) Inverse depth planar parameterization; (b) 3-D points in the camera coordinate
system obtained with the planar parameterization and the key frame.
(IDPP). It is defined in terms of a 10-D vector m; = [r?, ", n¢, p;]7, where r?’, and @!" de-
note the position and orientation of the reference camera in world coordinates, n{ denotes
the 3-D normal vector in the reference camera coordinate system and p; is the inverse depth
of the seed point. The parameterisation is illustrated in Fig. 3a. Note that we use a redun-
dant non-unit 3-D vector for the normal representation, which avoids potential singularities,
compared with a polar representation, for instance.

Based on the above formulation, we now consider in detail the steps involved in the
unified mapping process described in Section 2, namely the initialisation of new features,
the associated measurement model and the observation and update steps within the EKF.

3.2 Initialization

At a given a time step, a salient point (up, vo) in the current image is used to initialize a new
seed point. For this, the state vector is augmented with m; = [r", @",[0,0,1]7, p;], where
r; and @, are the position and orientation estimates of the current camera pose. The vector
[0,0,1]7 initializes the normal in the perpendicular direction to the camera plane and p,
is initialized as for conventional IDP [17]. Outside of the state vector, the current image is
associated with the new feature m; as a key frame along with the initial pixel position (ug,vo)
which defines the direction of the seed point p§ as shown in Fig. 3a. The state covariance P
is augmented to include the initial normal covariance Ry, which is taken to be diagonal with
large values, i.e. it is undetermined at this stage, and the variance of the inverse depth 62,
which is initialized as in IDP [17]. Thus, the new covariance P"*" is given by:

P 0 O I ‘ 0
Pev —J 0 R, 02 JT J= ( PP 0 ‘ Tis ) 2)
X0 b) M ) X
0 0 o

3.3 Measurement Model

The measurement model consists of two steps: (i) construct a set of 3-D points in the world
coordinate system using the predicted state of the planar structure 1; = £}, ®", 1, p;] ; and
(ii) project the set of 3-D points onto the current predicted camera plane to obtain a set of
predicted 2-D measurements.

For the step (i), assume that we have a set of salient points in the key frame which have

been associated with a planar structure. Each point j has an associated pixel position (u;,v;)
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that defines a bearing ray h‘](u j,v;j) in the normalized reference camera plane. Each one of
the rays will intersect the planar surface producing a set of 3-D points, as shown in Fig. 3b.
To find the 3-D position where the intersection occurs the plane intersection equation can
be formulated by using a known point on the plane and its normal. The latter is provided
by the predicted normal fif and the seed point pj provides the former, constructed from the
predicted inverse depth p; and the ray h{ corresponding to the initial pixel (uo,vo) as shown
in Fig. 3a. Since the plane pose is defined in the reference camera coordinate system then
the plane-ray intersection equation is greatly simplified, i.e. for each ray h¢, the intersection
is given by:

hC( R )T_nt_r
P = ﬁ [W} h(uj,v;) 3)

where each point p;T is defined in the reference camera coordinate system. To convert to
the world coordinate system we use the predicted translation £’ and rotation matrix R*(®,")
of the reference camera as follows:

P = R”(@)")p + )

For step (ii), we can use the standard perspective projection model into the current pre-
dicted camera pose:

z; =h(v,p}) = [JR*(0")(pj ")) ®)

where r" is the predicted translation component and R°(@") is the rotation matrix of
the current predicted camera v; [] denotes pin-hole projection for a calibrated camera with
additive zero-mean Gaussian noise and pixel noise covariance R.

Before the observation is performed, the EKF requires the calculation of Jacobians for
the measurement model in 5 which can be taken from the already available Jacobians for the
point measurement model. Thus, the Jacobian w.r.t. the current camera v remains the same

. o - . . apy .
whilst the one w.r.t. the planar feature m; is calculated with the chain rule: 991;11_ = aap'b I in
1 _] 1

a similar fashion to the IDP approach [17].

3.4 Observation and Update

The observation for each planar structure is the projection of the set of associated feature
points as defined by eqn (5). These are sought about their predicted positions derived from
the filter as illustrated in Fig. 2. Individual search regions about the predictions for each
point are determined in the usual manner by projecting the covariances of the feature es-
timates through equations (3)-(5). For each point, an observation is obtained by applying
a template matching process on all salient points within the predicted search region in the
current frame.This is based on regions of size 11 x 11 pixels extracted from the key frame
and normalised cross correlation, with warping applied according to the current mean esti-
mate of the normal vector. Note therefore that the method automatically provides a degree of
view invariance due to the use of the planarity constraint. The best matches for all the planar
points are then used to update the filter and hence the estimates of the reference camera, seed
point and normal vector. As indicated earlier, individual points for which sufficiently good
matches cannot be found over several frames are regarded as outliers and removed from the
planar structure as shown in Fig. 2f.
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(a) (b) (© (d)
Figure 4: Camera views (top) and 3-D views for the indoor sequence: (a) Examples of
plane and point feature estimates, the latter shown as single green ellipses and the former
as connected point features in the camera view and bounding boxes in the 3-D view. (b)-
(d) New point features associated with existing planar features allow increased map density
without increasing in the overall state size.

To allow robust SLAM operation we also implemented a relocalisation mechanism to
allow recovery should tracking fail. For this, we adopted the approach of Chekhlov ez al. [8],
using spatial gradient descriptors to characterise a subset of selected points associated with
each planar feature. This enables rapid relocalisation, helped by the large number of points
available due to the efficient map representation provided by the planar representations.

4 Experiments

The proposed method has been tested under real time operation in several indoor and outdoor
scenarios. We provide two representative examples to demonstrate the effectiveness of the
method. Both were obtained using a hand-held calibrated camera with an image size of
320x240 pixels and a wide angle lens having an 81° horizontal FOV. Salient points were
obtained by using the Shi and Tomasi salient point detector [20] in combination with FAST
and non-maximal suppression [19].

The aim of the experiments was to demonstrate that the approach is effective in (i) un-
delayed initialisation of planar features alongside the usual point initialisation; (ii) growing
those structures as and when appropriate whilst maintaining a stable hybrid map; and (iii)
significantly reducing the size of the map, and hence the state space, within the EKF. We
have therefore selected test sequences in which the camera motion is fast and in which fea-
tures are only in view for very limited periods. With points only mapping, such cases result
in large numbers of features being initialised, resulting in a large map representation. More-
over, the point feature estimates do not converge before moving out of view, hence making
the alternative forms of SLAM based planar mapping inappropriate since they rely on point
convergence prior to initialising planar features.

4.1 Indoor Sequence

The first sequence was taken by a person moving along a corridor whilst keeping the camera
pointing ahead. The corridor was approximately 35 meters long with a single right angled
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Figure 5: Camera views (top) and 3-D views for the outdoor sequence showing estimated
point and planar features.

turn. The person was moving at a good walking pace and thus salient points on the planar
walls on either side move quickly in and out of view. The scene is not particularly well
textured and there are frequent changes in illumination due to the overhead lighting.

Figure | and the first column in Fig. 4 show examples of point and planar features
initialised and tracked in different sections of the sequence. The planar features are shown
both by bounding boxes in the 3-D external view (Fig. 1a and the bottom row of Fig. 4), the
projection of those boxes into the current camera view (Fig. 1b), and connected point features
as shown in Fig. 1c and the top row of Fig. 4. For example, in Fig. Ic, a large planar feature
has been grown corresponding to the right-hand side of the corridor and currently consisting
of 8 connected point features. Note also the small number of isolated point features within
the hybrid map.

Figures 4c-d provide a good example of the ability of the method to keep down the size
of the map representation. At this point in the sequence, the person has stopped to view the
right-hand corridor wall and moves the camera closer. To maintain tracking new features
need to be initialised into the map. With a points only system this would necessarily lead to
a large increase in the state size. In contrast, with the proposed approach, the new features
are linked to existing planar features via the respective key frame, resulting in no increase in
the size of the map representation (the EKF state size is shown in the top-left of the figures).
This is a further example of adaptive measurement for increasing map density which was
previously introduced in [14].

To assess the significance of the state size reduction, we compared performance against
a standard points only method. The variations in state size and the total number of point fea-
tures initialised over the sequence for both approaches are plotted in Fig. 6a. This illustrates
several significant outcomes. First, the hybrid method IDPP requires a significantly smaller
state size (around 50%). Second, the state size reduction starts as soon as the map begins to
be built, illustrating that planar features are being introduced with minimal delay in contrast
to previous methods. Third, it does this whilst at the same time initialising a greater number
of point features, thus maintaining greater stability in the filter. This is achieved because the
latter are successfully associated to planar features, as anticipated.

To illustrate the overall mapping performance, Fig. 6b shows the final map and the as-
sociated uncertainties of the point and planar features overlaid on a schematic plan of the
corridor. Apart from some drift at the end, which is to be expected without loop closure, this
shows good alignment of the two maps. Notably it does this whilst operating in realtime at
above 20 fps throughout the sequence. This is in comparison to the points only case in which
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Figure 6: (a) State size and number of 3-D points obtained with the hybrid IDPP and a
points-only method for the indoor sequence. (b) Estimated map and uncertainties overlaid
on a schematic plan for the indoor sequence. (c) Estimated map and uncertainties overlaid
on an aerial view for the outdoor sequence.

the large state size compromises the filter and the processing rate drops to below 1 fps by
the end of the sequence. Of course, this is with a single filter and the use of a sub-mapping
mechanism, as in [10] for instance, would aid in this respect. Nevertheless the comparison
is useful to indicate the significant degree of saving that can be made by utilising planar
structure. Moreover, we would argue that delaying the introduction of sub-maps is beneficial
in terms of minimising the associated overhead of managing sub-maps and that maintaining
efficient map representation is therefore of key importance.

4.2 Outdoor Sequence with a Long Walk

In a similar manner to the indoor sequence, the outdoor sequence was captured by a person
pointing the camera ahead and walking with normal speed for about 230 meters around an
urban square. Again, large numbers of salient points on either side move quickly in and out of
camera view. Figure 5 shows examples of initialised tracked point and planar features in both
the camera and 3-D views. Note that the system successfully detects planes corresponding
to many planar structures within the scene, on the road, walls, buildings and cars. Figure
6¢ shows the estimated map overlaid on an aerial view of the square obtained from Google
Maps. The total state size for this sequence was of 820 with a density of 765 planar points
for the hybrid method which again maintained a processing rate above 20 fps. In contrast,
for the points only method the map size increased quickly producing an early drop of the
frame rate. At the end of the sequence the state size was 2232 with 671 mapped points with
the frame rate falling below 1 fps.

5 Conclusion

We have presented a novel algorithm for mapping in monocular SLAM which unifies the
estimation of point and planar features. The key contribution is the use of the IDPP param-
eterisation which allows the features to be dealt with in a common framework, making no
distinction at initialisation and allowing planar or point structure to emerge according to the
underlying scene. This allows fast and recursive introduction of planar structure, unlike pre-
vious methods, and avoids additional processing overhead, plane fitting, etc. Experiments
demonstrate the potential of the method to give efficient map representation when operating
over large areas for both indoor and outdoor environments. Future work will include further
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investigations into the consistency of the approach through simulations, looking at incorpo-
rating the approach within a sub-mapping framework and the use of visual clues to guide the
selection of salient points when growing planar structures.
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grant 189903. We would like to thank Andrew Gee and Walterio Mayol-Cuevas for valuable
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