BetaSAC: A New Conditional Sampling For RANSAC
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We present a new strategy for RANSAC [2] sampling named Be-
taSAC, in reference to the beta distribution. Our proposed sampler builds
a hypothesis set incrementally, selecting data points conditional on the
previous data selected for the set. Such a sampling is shown to provide
more suitable samples in terms of inlier ratio but also of consistency and
potential to lead to an accurate parameters estimation. The algorithm is
presented as a general framework, easily implemented and able to ex-
ploit any kind of prior information on the potential of a sample. As with
PROSAC [1] and GroupSAC [4], BetaSAC converges towards RANSAC
in the worst case. The benefits of the method are demonstrated on the
homography estimation problem.

1 Objective

As shown in Figure 1, an uncontaminated sample is not always able to
lead to a good estimation of the searched model parameters. The aim of
BetaSAC is to generate more suitable samples than previous methods.
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Figure 1: Different types of inlier samples for the line fitting problem.
1) inlier sample (all sample points belong to a line). 2) consistent sam-
ple. 3) sample consistent with additional information. 4) suitable sample.
Thanks to its conditional sampling, BetaSAC is able to generate suitable
samples earlier than RANSAC and PROSAC would do.

2 Algorithm

Given an iteration count ¢, a draw of a complete sample s of size m with
our conditional random variable is presented in Algorithm 1.

Algorithm 1 Generation of one sample s of m data points.
1§« {0}
2: for/=0tom—1do
3:  Select n data points at pure random
Rank the n data points with respect to s

s«—sUd

4
s:  Find d, the i;(r)"* among the n data points in the ranking
6
7: end for

With the use of a linear selection algorithm for step 5, the computational
complexity of this sampling procedure is only O(m.n), with n typically
equal to 10.

Which ranking function to use ? It is possible to use any kind of in-
formation about how well one data point would complement a current
partial hypothesis sample. This includes inlier priors but also consistency
and non-degeneracy criteria.

What is the value of i;(¢) ? i;(¢) evolves during the iterations in a way

that satisfies two properties introduced in [1]:
e Most probable samples are drawn in the first iterations.

e After Ty iterations, each sample has had the same chance of being formed.

These properties allow to guide the sampling while preventing from an
impairing of the randomization.

3 Results

We tested our approach on the homography estimation problem in pres-
ence of outliers. In this context, a data point d is a correspondance be-
tween two images.

The use of BetaSAC requires the definition of a scoring function ¢
(line 4 of Algorithm 1). We tried two different functions. The first,
Gmarching (d), is simply the matching score of the correspondence d. This
is the function used in PROSAC. Let P, Pg’, and A, be two end points and
the associated affine matrix of a correspondence d obtained with an affine
invariant key point detector (we used [3]). Given a partial hypothesis set
s={s1,... ,sM} and for any correspondence d, the second scoring func-
tion, guffine(d,s), is defined in Equation 1. As it depends on s, it could
not be used in the PROSAC framework.

qmazching(d) if|s|]=0
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‘Iaffine(dwg) = {
Results on four image pairs are presented in Figure 3. BetaSAC with
scoring function gy fine is always significantly faster than RANSAC and
PROSAC, which prove the benefit of a conditional sampling.

Sampling algorithm Mean iters. | Time (ms) | Speed-up
RANSAC 8181.9 1595.5 1
PROSAC 1709.9 3333 4.79
BetaSAC with @arching 1548.6 289.3 5.51
BetaSAC with g4 fine 287.0 55.51 28.74
RANSAC 15858.5 1447.4 1
PROSAC 6445.6 587.5 2.46
BetaSAC with @arching 6414.0 602.3 2.4
BetaSAC with g4 fine 636.9 63.8 22.69
RANSAC 1302.8 1293.0 1
PROSAC 1533.6 1523.1 0.85
BetaSAC with @arching 678.2 677.9 1.91
BetaSAC with g4 fine 30.8 30.9 41.85
RANSAC 687.2 198.0 1
PROSAC 329.7 94.9 2.09
BetaSAC with @arching 242.8 71.0 2.79
BetaSAC with g4 fine 7.1 2.12 93.41

Figure 2: Results obtained on the homography estimation problem using
two different ranking functions, Guarching and qaf fine-
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