Live Feature Clustering in Video Using Appearance and 3D Geometry
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Now that good solutions to real-time monocular SLAM exist (e.g. [3]),
attention is turning towards what additional 3D information can be ex-
tracted live from the same video stream. In this paper our aim is to show
that the application of sensibly formulated online feature clustering to the
points generated by online SLAM allows useful determination of groups
of features which are closely related both in geometry and appearance.
We consider this a problem in data-driven perceptual grouping, and the
clusters may or may not correspond to individual objects in the scene;
however they definitely correspond to characteristic, repeatable structure
and could aid in automatic scene understanding, labelling and recognition.
Our clustering method proceeds via interleaved local and global processes
which permit scalable real-time operation in scenes with thousands of fea-
ture points, and has the potential to become part of the standard toolbox
of live 3D camera tracking and reconstrution systems.

Single keyframe clustering

Figure 1: Independent single keyframe clustering results for 3 different
keyframes of an indoor video sequence.

We use the monocular SLAM system described by Strasdat ef al. in
[4] which follows the main design of Klein and Murray’s PTAM [3]. The
output is a live camera pose estimate, and a continuously updated ‘map’
of the 3D positions of thousands of point features and poses of a repre-
sentative set of historical keyframes.

In our algorithm, first the features from each single keyframe are clus-
tered, taking into account both appearance and geometry information.
Each feature’s appearance is characterised using a 1D RGB histogram
computed over the 15x 15 pixel image patch extracted around the image
position of that feature. For geometry information, we compare two fea-
tures i and j with 3D positions x; and x; using the 3D distance between
them normalised by the distance to the camera, meaning that the level of
cluster detail depends on the distance between the scene and the camera.
Following the line of work of [2], we combine appearance and geometry
information into a one dimensional similarity measure between features:
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where drgg (i, ) is the xz distance between the two histograms. This sim-
ilarity measure can be interpreted as the probability that any two features
i and j belong to the same cluster given their geometrical closeness and
similarity in appearance. The complexity of spectral clustering methods
as used in [2] currently prevents their use in live video analysis. We there-
fore have designed a new clustering algorithm in the spirit of Constrained
Agglomerative Clustering (CAC) [5]. First, a divisive procedure sepa-
rates the input data into a set of small yet very consistent clusters. Then
an agglomerative algorithm merges the obtained clusters recursively, pro-
ceeding by pairs at each iteration until a suitable number of clusters is ob-
tained. We determine the number of clusters automatically using model
selection. Figure 1 shows single keyframe clustering results.

Sequence clustering

Next, we use the output of each single keyframe clustering process to
maintain, over the whole sequence, a matrix of pairwise co-occurrence
probabilities between all the features in the scene. We can then use the

Markov Cluster (MCL) algorithm [1], one of a class of Random Walks
methods for determining strongly connected regions of a graph. At con-
vergence, clusters naturally appear in the resulting graph as separate con-
nected components, thus removing the need to specify the numbers of
clusters beforehand. The implementation of MCL provided by Dongen [1]
takes advantage of the sparseness of the matrix of co-occurrence proba-
bilities to achieve efficient sequence clustering, only requiring a couple of
seconds even when the scene contains a few thousand features. Figure 2
shows sequence clustering results, notably showing the consistency of the
clustering of a cluttered scene across different viewpoints: as the camera
gets closer to the objects, more features are added to the already existing
clusters associated with these objects.

Figure 2: Global, incrementeally computed sequence clustering results
for a cluttered scene as the live camera explores.

Computational Performance

All results were obtained in ‘live’ conditions with all processing on a
standard laptop. On average, single keyframe clustering took 99ms, while
in the worst case sequence clustering, which is able to run amortized in
the background, took 5855ms (with more than 2000 features in the scene).
More detailed computation times are given in Figure 3.
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Figure 3: Left: keyframe computation time vs. number of features in the
keyframe. Right: sequence clustering computation time vs. total number
of features in the scene.
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