Multi-Scale Depth from Slope with Weights
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The integration of a slope map to yield a height (or depth) map is
a critical step in many machine vision techniques such as shape-from-
shading [4] and multiple-light photometric stereo [5]. These methods
have inherent advantages over competing techniques such as ldser an
stereo triangulation including their low cost, high resolution and their U Y
ability to recover albedo information. Major obstacles to the wider use
of integration methods are the computational cost and the fragility of cur- = n <= @ <= @
rent approaches.

Efficient algorithms, such as those integrators based on Fourier fil-
tering methods [3] or path-oriented algorithms [2, 6], are unable to effi-
ciently handle issues that appear in slopes obtained with real world data.
The Fourier filtering approach is robust against noise but does net tak . . .
into account the occurrence of discontinuities on the surface or urleelidth® central part of our algorithm is the recursive procedure below:
data on the computed slope map. While path-oriented methods avoid ur
desired regions and cliffs, the presence of noise produces spheayis ~ ComputeHeights(f, g, w)
differences between adjacent pixels since the accumulated erra-prop 1. If size of f is small enough then
gates along the paths. Weight maps can be used to exclude regions where 2. 2+ (0,0,...,0);
the slope information is missing or untrusted, and to allow for the inte- 3. €lse

Figure 1: The multiscale integration method.

gration of height maps with linear discontinuities (such as along object 4. "« ShrinkSopes(f,w); g + ShrinkSopes(g, w);
silhouettes) which are not recorded in the slope maps. The weight maps 5. W« ShrinkWeights(w);

can be determined by external information or by cliff or shadow detec- 6. Z « ComputeHeights(f’,g’,w');

tion algorithms. Integrators based on the weighted Poisson Equation offer 7. z+ ExpandHeights(Z);

good quality reconstructions in presence of the aforementioned preplem 8. A, b« BuildSystem(f,g, w);
given a suitable weight map. However, local iteration or direct system 9. z+< SolveSystem(A,b,2);
solving [1] methods are too costly and are therefore impractical forhigh ~ 10. Returre

resolution slope maps.

In this paper, we describe a robust integrator in which the key fea- Except for pathological cases, the memory and time costs of our
ture is the fast solution of the weighted Poisson-like integration eqi¥thod are typically proportional to the number of pixls This cost
tions. The equations are solved by a multi-scale iterative techniquei®igisymptotically optimal, and significantly better than that of the best
ing the Gauss-Seidel (or Gauss-Jacobi) algorithm. Each equation sRiddous weighted integrators, which solve Poisson equation system by
the equality between two estimates of the Lapladign) = (- (0z) at Gaussian or Cholesky factorization. These require time proportional to
the pointq[u,v]: one computed from the unknown heights (the left-haftf-> and memory proportional th*1>. Yet the accuracy and resilience
side), and one from the given slope values (the right-hand side). rin tgunoise of our method is comparable to that of other Poisson-based in-
implementation we use the equatiet? (z)[u,v] = —2(f,g)[u,v], which tegrators, and much better than that of path-based and Fourieribased
can be expressed by tegrators. Tests show that our method is as accurate as the best weighted

slope integrators, but substantially more efficient in time and space.

W w Wo_ Wo. _
-Z(2)[u,v] = Zu,v| - WT;)L(F szzsz Wfomzof - W(:)o Z. (1) [1] A. Agrawal, R. Raskar, and R. Chellappa. What is the range of sur

face reconstructions from a gradient field? Rroc. Sth European
Conf. on Computer Vision (ECCV), volume 3951, pages 578-591,

2006.
-9(f,g) = Ef _I_Ef‘_&f} _Ef“ . . ) ) )
Woo Woo Woo Woo [2] R. Fraile and E. R. Hancock. Combinatorial surface integration. In
(2 Proc. 18th Intl. Conf. on Pattern Recognition (ICPR 06) Volume 1,
o Mg Wy Wy Wy pages 59-62, 2006
Woo © Woo o Weo o | Woeo o , '

[3] R.T. Frankot and R. Chellappa. A method for enforcing integrability
in shape from shading algorithmkiEEE Trans. Pattern Analysis and

Herews, zs, frs andgys are the weight, height and slopes at pojfu+r,v+ 9 i . )
where allr,s € {—,+} — {1, +1}. Machine Intelligence, 10(4):439-451, 1988.

Unlike other local iterative methods, it obtains the initial estimate w B. K. P. Horn _and Michael J. BrooksShape from Shading. MIT
it Press, Cambridge, Mass., 1989.

recursively solving a reduced scale version of the problem. Namel;i i ) . .
reduces the given slope mahg and the weight maw to one half of their 5] R. 'J. Woodham._ Phptometrlc method fgr de_termlnlng suface orien-
original width and height, recursively computes from them a reduced- @tion from multiple images.Optical Engineering, 19(1):139-144,
scale height map, expands the latter to twice its size, and uses the Gauss-1980'

Seidel iteration to adjust this map according to the full-scale slope dth.Z. Wu and L. Li. A line-integration based method for depth recovery
The recursion stops at a level where the slope maps are so small that from surface normalsComputer Vision, Graphics and Image Pro-

the iteration will quickly converge from any initial guess. See figure 1.  cessing, 43(1):53-66, 1988.



