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The integration of a slope map to yield a height (or depth) map is
a critical step in many machine vision techniques such as shape-from-
shading [4] and multiple-light photometric stereo [5]. These methods
have inherent advantages over competing techniques such as laser and
stereo triangulation including their low cost, high resolution and their
ability to recover albedo information. Major obstacles to the wider use
of integration methods are the computational cost and the fragility of cur-
rent approaches.

Efficient algorithms, such as those integrators based on Fourier fil-
tering methods [3] or path-oriented algorithms [2, 6], are unable to effi-
ciently handle issues that appear in slopes obtained with real world data.
The Fourier filtering approach is robust against noise but does not take
into account the occurrence of discontinuities on the surface or unreliable
data on the computed slope map. While path-oriented methods avoid un-
desired regions and cliffs, the presence of noise produces spuriousheight
differences between adjacent pixels since the accumulated error propa-
gates along the paths. Weight maps can be used to exclude regions where
the slope information is missing or untrusted, and to allow for the inte-
gration of height maps with linear discontinuities (such as along object
silhouettes) which are not recorded in the slope maps. The weight maps
can be determined by external information or by cliff or shadow detec-
tion algorithms. Integrators based on the weighted Poisson Equation offer
good quality reconstructions in presence of the aforementioned problems,
given a suitable weight map. However, local iteration or direct system
solving [1] methods are too costly and are therefore impractical for high-
resolution slope maps.

In this paper, we describe a robust integrator in which the key fea-
ture is the fast solution of the weighted Poisson-like integration equa-
tions. The equations are solved by a multi-scale iterative technique us-
ing the Gauss-Seidel (or Gauss-Jacobi) algorithm. Each equation states
the equality between two estimates of the LaplacianL(z) = ∇ · (∇Z) at
the pointq[u,v]: one computed from the unknown heights (the left-hand
side), and one from the given slope values (the right-hand side). In our
implementation we use the equation−L (z)[u,v] =−D( f ,g)[u,v], which
can be expressed by
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Herewrs, zrs, frs andgrs are the weight, height and slopes at pointq [u+ r,v+ s]
where allr,s ∈ {−,+}= {−1,+1}.

Unlike other local iterative methods, it obtains the initial estimate by
recursively solving a reduced scale version of the problem. Namely, it
reduces the given slope mapsf ,g and the weight mapw to one half of their
original width and height, recursively computes from them a reduced-
scale height mapz, expands the latter to twice its size, and uses the Gauss-
Seidel iteration to adjust this map according to the full-scale slope data.
The recursion stops at a levelm where the slope maps are so small that
the iteration will quickly converge from any initial guess. See figure 1.

Figure 1: The multiscale integration method.

The central part of our algorithm is the recursive procedure below:

ComputeHeights( f ,g,w)
1. If size of f is small enough then

2. z← (0,0, . . . ,0);
3. else

4. f ′← ShrinkSlopes( f ,w); g′← ShrinkSlopes(g,w);
5. w′← ShrinkWeights(w);
6. z′← ComputeHeights( f ′,g′,w′);
7. z← ExpandHeights(z′);

8. A,b← BuildSystem( f ,g,w);
9. z← SolveSystem(A,b,z);
10. Returnz.

Except for pathological cases, the memory and time costs of our
method are typically proportional to the number of pixelsN. This cost
is asymptotically optimal, and significantly better than that of the best
previous weighted integrators, which solve Poisson equation system by
Gaussian or Cholesky factorization. These require time proportional to
N1.5 and memory proportional toN1.15. Yet the accuracy and resilience
to noise of our method is comparable to that of other Poisson-based in-
tegrators, and much better than that of path-based and Fourier-basedin-
tegrators. Tests show that our method is as accurate as the best weighted
slope integrators, but substantially more efficient in time and space.

[1] A. Agrawal, R. Raskar, and R. Chellappa. What is the range of sur-
face reconstructions from a gradient field? InProc. 9th European
Conf. on Computer Vision (ECCV), volume 3951, pages 578–591,
2006.

[2] R. Fraile and E. R. Hancock. Combinatorial surface integration. In
Proc. 18th Intl. Conf. on Pattern Recognition (ICPR’06) Volume 1,
pages 59–62, 2006.

[3] R. T. Frankot and R. Chellappa. A method for enforcing integrability
in shape from shading algorithms.IEEE Trans. Pattern Analysis and
Machine Intelligence, 10(4):439–451, 1988.

[4] B. K. P. Horn and Michael J. Brooks.Shape from Shading. MIT
Press, Cambridge, Mass., 1989.

[5] R. J. Woodham. Photometric method for determining suface orien-
tation from multiple images.Optical Engineering, 19(1):139–144,
1980.

[6] Z. Wu and L. Li. A line-integration based method for depth recovery
from surface normals.Computer Vision, Graphics and Image Pro-
cessing, 43(1):53–66, 1988.


