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Abstract

That most computer vision algorithms rely on parameters is a fact of life which can-
not be avoided. For optimal algorithm performance, these parameters need to be tuned;
generally speaking, this tuning is done manually or in some heuristic fashion. In this
paper, we propose a new, general method for attacking the problem of parameter tun-
ing, which is applicable to a wide variety of computer vision algorithms. Our method
is semi-automatic: a user is given several pairs of outputs from a given vision algo-
rithm, which have been generated by different parameter values; the user is then required
to simply choose, for each pair, which output is preferred. Our method then finds the
smoothest preference function which satisfies these user preferences. Using the theory
of Reproducing Kernel Hilbert Spaces, we show how this problem can be reduced to a
finite-dimensional convex optimization. We validate our parameter tuning scheme both
on simulated data and on the problem of tuning the parameters of an image denoising
algorithm.

1 Introduction
Most computer vision algorithms have parameters. This is a fact of life which is familiar to
any researcher in the field. Unfortunately, for algorithms to work properly, the parameters
have to be tuned. It is this general problem, of choosing parameters for optimal algorithm
performance, that we address in this paper.

At first blush, a general approach to this problem seems difficult; indeed, most prior
work seems to have focused on parameter tuning for specific algorithms. There are many
examples of such tuning systems for specific algorithms; we give a few examples to illustrate
the flavour of these approaches. Yitzhaky and Peli [13] choose the parameters for edge
detection through a procedure of estimating the ground truth edge maps of images, and then
using standard statistical quantities (area under the ROC curve, etc.) to measure the quality
of a particular set of parameters. Lindeberg [7] focuses on the problem of choosing the
scale in low-level feature detection, and shows how to choose scale automatically through
the computation of local extrema of combinations of normalized derivatives of the image.
Broggi et al. [1] tune the parameters of a stereo vision system which is intended for mobile
robotic or automotive purposes. Here the ground truth is known through the placement of
markers on the hood of the test vehicle. In the Design Galleries paradigm [8], Marks et al.
present a GUI which allows users to visualize the results of many different parameter values,
and thus to choose the best from amongst this gallery. Parameter tuning systems have also
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been explored within the machine learning literature, including work on SVM parameters [2]
and a general technique [6] which combines cross-validation with a greedy search method.

In this paper, we propose a semi-automatic approach to parameter tuning, which is
general-purpose and can be used for a wide variety of computer vision algorithms. The
basic setup is as follows. The vision algorithm takes as input (i) an actual input (commonly
an image) and (ii) parameter values. From the input and the parameter values, it produces an
output (sometimes an image, sometimes another quantity). Thus, a single run of the vision
algorithm may be characterized by the triple (input, parameter,out put).

Now, the vision algorithm is run several times, leading to several triples of the form
{(inputi, parameter,i out puti)}m

i=1. From these runs, the user is given pairs of outputs, and
asked to judge which output is preferred, in that it constitutes a higher quality output. For
example, one such pair might be (out put1,out put2), and the user might decide that out put1 is
preferred to out put2. This implies that the set parameter1 is preferable to the set parameter2,
in that it produces a higher quality output, according the user. We denote this situation as

parameter1 � parameter2

The user provides such a pairwise preference for several pairs of outputs. Based on these
pairwise preferences, the goal is to find a function over the parameter space which respects
the user’s preferences, i.e. such that if parameter1 � parameter2 then the function is larger
for parameter1 than for parameter2.

This approach is attractive since it puts minimal demands on the user: at any given time,
the user is only required to judge between two outputs, and to indicate which of the outputs
is better. This is generally much easier than requiring that the user supply a full ranking on a
large number of outputs, which for many applications is quite challenging.

Given the user’s pairwise preferences, the problem can be formulated as one of finding
the smoothest function which satisfies the user’s preference constraints. The smoothness
energy can often be specified as a norm in a Reproducing Kernel Hilbert Space, leading to
the reduction of the problem at hand to a finite-dimensional convex optimization. Once the
preference function has been computed, the optimal parameters can be found as those which
maximize the preference function.

The remainder of the paper is organized as follows. Section 2 shows how to formally
pose and solve the problem of optimal parameter tuning by pairwise preferences. We show,
after some mathematical development, that the solution of the problem can be converted into
a quadratic program, which can be solved by any off the shelf solver. Section 3 presents
experiments, both on simulated data and on parameter tuning for image denoising. Section
4 concludes.

2 Theory and Algorithm
In this section, we outline the problem of optimally choosing parameters based on a user’s
pairwise preferences. We begin by formalizing the problem. We then recast the problem
as one of minimizing the norm of a function in an appropriate Reproducing Kernel Hilbert
Space (RKHS), subject to the pairwise preference constraints. We then show how to use the
Representer Theorem [5, 10] to convert the optimization from an infinite-dimensional one
into a convex, finite-dimensional one. The problem is in fact a quadratic program, which can
be solved with standard software.

Citation
Citation
{Cherkassky and Ma} 2004

Citation
Citation
{Kohavi and John} 1995

Citation
Citation
{Kimeldorf and Wahba} 1971

Citation
Citation
{Scholkopf, Herbrich, and Smola} 2001



KISILEV, FREEDMAN: PARAMETERS BY PAIRWISE CHOICES 3

Before diving into the mathematics, we should note that similar problems have been
posed in the machine learning community, e.g. [4]. In the machine learning context, one is
typically interested in the problem of ranking a discrete number of items, with applications
in information retrieval (e.g. search engines); it is sometimes the case that the input there
is in the form of a user’s pairwise choices. While this type of problem is clearly related to
our problem, the motivations are quite different. In our case, one wishes to learn an entire
continuous function – the preference function – over parameter space, which one can then
optimize to find the optimal choice of parameters for a particular vision algorithm. In the
machine learning setting, one wishes to rank a discrete set of elements, and this ranking is
generally the algorithm’s end goal.

Nonetheless, the methods share some technical commonalities. We provide an alternative
derivation for the solution to the relevant optimization problem than is provided in [4]. Our
derivation is more closely related to the problem of continuous function approximation from
pairwise inputs than is the method provided in [4], and so is more appropriate for the task at
hand.

2.1 Formalizing the Problem
Let us recall the scenario that we have proposed for optimal parameter tuning. The vision
algorithm takes an input both an actual input as well as its parameter values; from the input
and the parameter values, it produces an output. A single run of the vision algorithm is thus
characterized by the triple (input, parameter,out put). The vision algorithm is run several
times, leading to several triples {(inputi, parameter,i out puti)}m

i=1. From these runs, the user
is given pairs of outputs, and asked to judge which output is preferred, in that it constitutes a
higher quality output. For a pair like (out put1,out put2), the user might decide that out put1
is preferred to out put2, which implies that parameter1 is preferable to parameter2, which
we denote by parameter1 � parameter2. The user provides such a pairwise preference for
several pairs of outputs. Based on these pairwise preferences, the goal is to find a function
over the parameter space which respects the user’s preferences, i.e. such that if parameter1�
parameter2 then the function is larger for parameter1 than for parameter2.

There are obviously many such functions; which one should be chosen? A natural choice,
in the absence of any specific prior, is the smoothest such function. We now formalize the
problem of choosing the smoothest function subject to the user’s pairwise choices.

Let a parameter be denoted by the vector x, and the parameter space by X = Rd . Let
the user preference function be denoted by f : X → R, and let the set of such functions be
denoted F . Let S[ f ] denote the “smoothness energy” of f ; when f is very smooth, S[ f ] will
be small, and when f is not smooth, and has many variations or wiggles in it, then S[ f ] will
be large. We assume that the smoothness energy functional is non-negative, i.e. S : F →R+.

The parameter pairs are denoted by {(x2i−1,x2i)}n
i=1, where they have been ordered so

that x2i−1 is preferred to x2i. One might think that this preference constraint could be written
as f (x2i−1) > f (x2i); however, it is clear that with such a constraint, one may take f (x2i−1)
arbitrarily close to f (x2i), with the resulting smoothest function being essentially constant.
Thus, we write the constraints instead as

f (x2i−1)≥ f (x2i)+1

where the 1 above is arbitrary, and may be replaced by any other constant.1

1It is also possible to replace the constraint by f (x2i−1) ≥ f (x2i)+ δi, where the value of δi varies with pair i.
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Thus, the optimization problem we wish to solve is

min
f∈F

S[ f ] subject to f (x2i−1)≥ f (x2i)+1, i = 1, . . . ,n (1)

This is an infinite-dimensional optimization over a continuous function f . In what follows,
we show how to reduce this to a more manageable convex, finite-dimensional optimization
for a particular class of smoothness energy functionals.

2.2 The Smoothness Energy Functional as a Norm in an RKHS
We begin by defining a Reproducing Kernel Hilbert Space (RKHS), and the norm within the
RKHS. Our goal will then be to express our smoothness energy functional as norm within
an RKHS. The reason for doing so will be the ability to convert our infinite-dimensional
optimization problem into a simpler, finite-dimensional optimization, but we will turn to that
conversion in Section 2.3. For the moment, we will focus on explaining how interesting
classes of smoothness energy functionals may be captured as norms within given RKHS’s.

Given a set X , a kernel k on X is defined as a function k : X 2 → R such that for all
finite subsets {xi}n

i=1 of X , the matrix K with elements given by Ki j = k(xi,x j) is positive
definite.2 In an intuitive sense, the function k measures the similarity between objects in the
set. A Reproducing Kernel Hilbert Space (RKHS) may then be defined as follows [9].
Definition: Let X be a nonempty set and H a Hilbert space of functions f : X →R. Then
H is called a Reproducing Kernel Hilbert Space endowed with the dot product 〈·, ·〉 if there
exists a function k : X 2→ R with the following properties:

1. k has the reproducing property 〈 f ,k(x, ·)〉= f (x) for all f ∈H .

2. k spans H , i.e. H = span{k(x, ·) : x ∈X }, where Z denotes the completion of the
set Z.

Given an RKHS H , the inner product defines a norm in the standard way, i.e. we define

‖ f‖H ≡
√
〈 f , f 〉

Let us return to the main thread of our argument: we would like to express the smooth-
ness energy functional as norm in an RKHS. We proceed by way of illustrative examples. A
standard smoothness energy functional penalizes the second derivative of the function, i.e.

S[ f ] =
d

∑
k,`=1

(
∂ 2 f

∂xk∂x`

)2

This functional is sometimes called the thin-plate spline functional. It turns out that this S[ f ]
may be expressed as the square of the norm ‖ f‖2

H in an RKHS H with kernel k given by

k(x,x′) =

{
‖x− x′‖d if d is even
‖x− x′‖d log‖x− x′‖ if d is odd

This may be relevant in situations where the user is able, for example, to distinguish between the case where x2i−1
is “better” than x2i and the case where x2i−1 is “much better” than x2i. The derivation below carries through for the
case of varying δi with minor modifications.

2There is an issue with terminology here: sometimes a kernel is just a function k : X 2→R, and a kernel which
satisfies the extra positive definiteness condition is a positive kernel. We will have no use for non-positive kernels
here, so we will keep the notation as is.
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See, for example, the paper by Duchon [3].
Another smoothness energy functional may be expressed more easily in the Fourier Do-

main. Let

S[ f ] =
∫ ‖ f̃ (ω)‖2

G̃(ω)
dω

where f̃ denotes the Fourier Transform of f . The function G̃(ω) should be small when ω

is large; this will effectively penalize high frequency oscillations in f (x). This S[ f ] may be
expressed as the square of the norm ‖ f‖2

H in an RKHS H with kernel k given by k(x,x′) =
G(x− x′), where G is the Inverse Fourier Transform of G̃. For example, we may choose
G̃(ω) = |σ |e−σ2‖ω‖2/2, in which case K(x,x′) = e−‖x−x′‖2/σ2

, the familiar Gaussian kernel.

2.3 The Representer Theorem
We have shown that the smoothness energy functional can be expressed as the norm (or
squared norm) in an RKHS.3 In this case, we may rewrite the optimization problem (1) as

min
f∈H
‖ f‖H subject to f (x2i−1)≥ f (x2i)+1, i = 1, . . . ,n (2)

Let us further rewrite the constraints as follows.

C( f (x1), . . . , f (x2n)) =

{
0 if f (x2i−1)≥ f (x2i)+1 for i = 1, . . .n
∞ otherwise

Then we may rewrite our optimization as

min
f∈H

C( f (x1), . . . , f (x2n))+‖ f‖H

To solve this problem, we draw on the famous Representer Theorem [5, 10], which has
played an important role in machine learning.

Theorem 1 (Representer Theorem) Let Θ : R+→R be a strictly monotonically increasing
function, and let C : R2n → R∪{∞} be an arbitrary function. Then any minimizer of the
problem

min
f∈H

C( f (x1), . . . , f (x2n))+Θ(‖ f‖H )

admits a representation of the form

f (x) =
2n

∑
i=1

αik(x,xi) (3)

The importance of this theorem is that it reduces the infinite-dimensional optimization
where one must search over an entire space of functions, to a finite dimensional optimization
in which one must simply find the best 2n scalars {αi}2n

i=1. We now show how to perform
this reduction explicitly.

3Note that it does not matter whether we optimize the norm or squared norm, as the resulting minimizing
argument will be the same in both cases. We will thus move freely between these two objective functions.
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2.4 Solving the Problem as a Quadratic Program
According to the Representer Theorem, the optimal solution for f can be written as f (x) =
∑

2n
i=1 αik(x,xi). In this case, the squared norm of f in the RKHS may be simplified as follows:

‖ f‖2
H = 〈 f , f 〉

=

〈
2n

∑
i=1

αik(·,xi),
2n

∑
j=1

α jk(·,x j)

〉

=
2n

∑
i=1

2n

∑
j=1

αiα j〈k(·,xi),k(·,x j)〉

=
2n

∑
i=1

2n

∑
j=1

αiα jk(xi,x j)

= α
T Kα

where in the fourth line, we have made use of the reproducing property of the kernel k, and
in the final line we have defined K as a 2n×2n matrix, and α as a 2n×1 column vector, in
the natural ways.

The constraint f (x2i−1)≥ f (x2i)+1 may be rewritten as

2n

∑
j=1

αik(x2i−1,x j)−
2n

∑
j=1

αik(x2i,x j)≥ 1 (4)

Denote by Kodd the n×2n submatrix of K with the odd rows selected, and Keven the analogous
submatrix with the even rows selected. Then we may rewrite the set of n constraints in (4) as

Bα ≥ e

where B = Kodd−Keven and e is the n-dimensional vectors whose entries are all 1’s.
Thus, the optimization in (2) is reduced to

min
α∈R2n

α
T Kα subject to Bα ≥ e (5)

which is a quadratic program, and can be solved by any standard solver.

2.5 Summary
We now summarize the algorithm. We solve the quadratic program in (5) to get the optimal
{α∗i }2n

i=1. We then plug these into Equation (3) to find the smoothest preference function
f ∗(x) satisfying the user constraints. Given this preference function f ∗(x), we may now find
the optimal parameters by maximizing f ∗, i.e.

x∗ = argmax
x∈X

f ∗(x)

This latter optimization can be performed exhaustively if the dimension of X is suffi-
ciently small, i.e. 2 or 3, as in the applications described in Section 3. Alternatively, if the
dimension of the parameter space is high, we may approximate the optimal parameter by the
best of the parameter values that have been used for learning, i.e.

x̃ = arg max
x∈{xi}2n

i=1

f ∗(x)
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3 Results
In this section we present results of several experiments on simulated and real world data
which show the effectiveness of the proposed method. In all cases, we used a Gaussian
kernel; the bandwidth was chosen by a heuristic based on the density of the sampling which
space constraints preclude us from describing at greater length. Very similar results come
from using an inverse multiquadric kernel.

3.1 Simulated Data

The first set of experiments involve simulated data: we generate a true preference function
ftrue(x), but our algorithm is only given access to pairwise preferences. That is, the algorithm
is given pairs of the form (xa,xb) where ftrue(xa) > ftrue(xb); however, the algorithm is
only given those pairs, and is given no access at all to the function ftrue. In particular, it is
important to note that the algorithm is not even given function values for the pairs (xa,xb),
but only their order (i.e. xa is preferred to xb). In this way, we effectively simulate the
problem of parameter tuning, but we have a ground truth preference function ftrue which we
can compare to our approximated preference function.

We begin with 1D parameters, and generate ftrue as a 1D function from a mixture of
three Gaussians. To generate the pairs of parameters, we randomly sample 16 values leading
to 8 pairs of parameters; as explained above, the preference constraints within each pair are
determined according to the function ftrue. The left side of Figure 1 shows the true function
ftrue in blue and and the estimated function f in red. Even from the very limited data of 8
pairs we are able to predict the maxima quite accurately, and even reconstruct the overall
shape of the unknown function. It is critical to emphasize that this is a blind reconstruction,
in that we do not use the function values, but only the pairwise orders.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

4

6

8

10

Original EstimatedOriginal Estimated

 

Figure 1: Simulated data examples of ’blind’ reconstruction of functions. Left: 1D example
- true function (blue) and reconstructed function (red). Center: original 2D function and its
projection. Right: reconstructed 2D function and its projection.

For the case of 2D parameters, we generated a 2D function ftrue using a mixture of four
2D Gaussians, see Figure 1, center. The corresponding projection of the function in the lower
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Figure 2: MSE of the maximum position of the 2D simulated example for varying number
of pairs.

Figure 3: An image denoised using 16 different settings of bandwidth parameters of the
Bilateral Filter.

part shows more clearly the position, that is the coordinates, of the function maxima. As in
the 1D case, we generate pairs randomly. The right side of Figure 1 shows the reconstructed
function with 16 pairs. As in the 1D case, we are able to predict correctly the position of
maxima, and the shape of the function.

We then evaluate the algorithm performance for different numbers of pairs. For each of
4, 8, 12, 16, and 20 pairs, we run 100 independent experiments (i.e. randomly sample the
pairs 100 times) and calculate the mean squared error (MSE) between the coordinates of the
maximum of ftrue and the maximum of our reconstructed function f . The results are shown
in Figure 2. Notice that the MSE is the lowest for 12 pairs, and is slightly larger for 16 and
20. This seems surprising, as we would expect the MSE to decrease for larger samples; the
reason for the increase is that the heuristic for choosing bandwidth is not perfect, and selects
a bandwidth which is larger than necessary for the latter two sample sizes.

3.2 Image Denoising
Next, we tested our method on image denoising applications. Our image denoiser is a Bi-
lateral Filter (BF) [11] with two parameters, the range bandwidth and the spatial bandwidth;
our goal is to determine their optimal values using our algorithm.

In our first experiment, we added Gaussian noise to a single image, and ran the BF with
16 combinations of bandwidth settings (4 different settings for each bandwidth parameter).
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Figure 4: Scatter plot of MSE versus 1-SSIM of the denoised images. Left: single image
denoising. Right: average over “test set” of 30 different images (see details in the text). The
red star corresponds to the denoising with the estimated optimal parameter set.

The corresponding denoised images are shown in Fig. 3. Out of the 16 images, 8 pairs
were randomly generated, and a user then judged each pair, selecting the output with better
denoising. From these pairwise preferences, the optimal bandwidths were chosen.

To quantify the effectiveness of the algorithm, the following procedure was used. For
each of the 16 images, we calculated two well known image quality measures, the mean
squared error (MSE) and the structural similarity measure (SSIM) [12], using our knowledge
of the noise-free image. The result of these computations is presented as a scatter plot in
Figure 4, left. Using the bandwidths selected by our algorithm we again run the BF, and the
corresponding MSE versus (1-SSIM) point is marked as a red star in the same plot. Note
that our optimal parameters are close to the MSE optimum, and are better than the best SSIM
result of the 16 settings in the test. This is a remarkable result as the SSIM index is known
to reflect well the visual similarities of images, and our input data are based on purely on a
visual pairwise comparison test.

Figure 5: The “learning set” of denoised images, using 16 different settings of bandwidth
parameters of the Bilateral Filter.

Next, we run a similar experiment, but with Gaussian noise added to 16 different images
(the “learning set”), with varying resolutions, illumination conditions, and so on (Figure
5). We used 16 settings of the bandwidth parameters; each image gets its own setting, and
the rest of the optimal parameter determination is precisely as in the previous experiment,
except that now the pairs consist of two different images. We evaluate on a separate “test
set,” consisting of 30 new images. For the optimal bandwidth parameter setting, as well as
the 16 settings used above, we compute the average MSE and SSIM – where the average is
taken over the 30 images of the test set. The scatter plot with the average MSE and SSIM
values, for the 17 parameter settings, is shown in Figure 4, right. As in the case of a single
image, our method yields the best SSIM index (red star), and is quite close to the best MSE
result. This further proves the effectiveness of our method.
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4 Conclusions and Future Directions
We have presented a new method for parameter tuning which relies on a user to specify
pairwise preferences. The algorithm then computes the smoothest preference function over
parameters consistent with this user input, and computes the parameters which maximize
this preference function. We have shown the method’s promise on simulated data and an
image denoising application. In the future, we expect to use the method on a variety of
vision algorithms, including segmentation and edge detection.
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