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Most computer vision algorithms have parameters. This is a fact of life
which is familiar to any researcher in the field. Unfortunately, for algo-
rithms to work properly, the parameters have to be tuned. We propose a
semi-automatic approach to parameter tuning, which is general-purpose
and can be used for a wide variety of computer vision algorithms.

The basic setup is as follows. The vision algorithm takes as input (i)
an actual input (commonly an image) and (ii) parameter values. From
the input and the parameter values, it produces an output (sometimes an
image, sometimes another quantity). Thus, a single run of the vision algo-
rithm may be characterized by the triple (input, parameter,out put). The
vision algorithm is run several times, leading to several such triples. The
user is then given pairs of outputs, and asked to judge which output is pre-
ferred, in that it constitutes a higher quality output. The user provides such
a pairwise preference for several pairs of outputs. Based on these pairwise
preferences, the goal is to find a function over the parameter space which
respects the user’s preferences, i.e. such that if parameter1 � parameter2
then the function is larger for parameter1 than for parameter2.

Let the parameters be denoted by x. Then this problem can be posed
as the following optimization over functions f :

min
f∈F

S[ f ] subject to f (x2i−1)≥ f (x2i)+1, i = 1, . . . ,n

where S[ f ] is a smoothness energy, and the constraints capture the user’s
pairwise preferences. This is an infinite-dimensional optimization over a
continuous function f , but it can be reduced to a convex, finite-dimensional
optimization for a particular class of smoothness energy functionals using
the theory of Reproducing Kernel Hilbert Spaces (RKHS) [1, 2]. If S[·]
can be written as a norm in an RKHS, then f admits a representation of
the form

f (x) =
2n

∑
i=1

αik(x,xi)

where k is the kernel of the RKHS. Given this, the optimization may be
written as a quadratic program in the vector α:

min
α∈R2n

α
T Kα subject to Bα ≥ e (1)

where K is a 2n× 2n matrix whose elements are k(xi,x j); B = Kodd −
Keven, for Kodd (Keven) the n× 2n submatrix of K with the odd (even)
rows selected; and e is the n-dimensional vectors whose entries are all
1’s.

Given this preference function f ∗(x), we may now find the optimal
parameters by maximizing f ∗, i.e.

x∗ = arg max
x∈X

f ∗(x)

This latter optimization can be performed exhaustively if the dimension
of X is sufficiently small, i.e. 2 or 3, as is the case in many applications.
Alternatively, if the dimension of the parameter space is high, we may
approximate the optimal parameter by the best of the parameter values
that have been used for learning, i.e.

x̃ = arg max
x∈{xi}2n

i=1

f ∗(x)

Experiments on simulated and real world data show the effectiveness
of the proposed method. The first set of experiments involve simulated
data: we generate a true preference function ftrue(x). The algorithm ob-
tains the pairs of the form (xa,xb) where ftrue(xa) > ftrue(xb); the func-
tion ftrue values for the pairs (xa,xb) are not given to the algorithm, but
only their order (i.e. xa is preferred to xb). Thus, we effectively simulate
the problem of parameter tuning, but we have a ground truth preference
function ftrue we can compare to our approximated preference function.

In the case of 2D parameters, we simulated a 2D preference function
ftrue using a mixture of four 2D Gaussians (Figure 1, left). We generate
pairs (xa,xb) randomly. Figure 1, right shows the reconstructed function
with 16 pairs; we are able to predict correctly the position of maxima, and
the general shape of the function.
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Figure 1: Simulated data examples of “blind” reconstruction of functions.
Left: original 2D function; Right: reconstructed 2D function.

Further, we tested our method on image denoising applications. Our
image denoiser was a Bilateral Filter (BF) [3] with two parameters, the
range bandwidth and the spatial bandwidth; our goal was to determine
their optimal values using our algorithm. We added Gaussian noise to
images and ran the BF with 16 different combinations of bandwidth pa-
rameters; each image received its own setting (4 different settings for each
bandwidth parameter). Then, 8 pairs of different images were randomly
generated and a user judged each pair, selecting the output with better de-
noising. From these pairwise preferences, the optimal bandwidths were
estimated.

To quantify the effectiveness of our algorithm, the following proce-
dure was used. We evaluated the method on a separate “test set,” consist-
ing of 30 new images. For the optimal bandwidth parameter setting and
the above 16 settings, we computed the averages (over the 30 denoised
images in the test set) of two well known image quality measures, the
mean squared error (MSE) and the structural similarity measure (SSIM),
using our knowledge of the noise-free images. Our method yields the best
SSIM index, and is quite close to the best MSE result (see Figure 2). This
is a remarkable result as the SSIM index is known to reflect well the vi-
sual similarities of images, and our input data are based completely on a
visual pairwise comparison test; this further proves the effectiveness of
our method.
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Figure 2: Scatter plot of MSE vs. 1-SSIM of the denoised images; the red
star corresponds to the denoising with the estimated optimal parameters.
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