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Abstract

We propose a method for reliably and accurately identifying anatomical landmarks
in 3D CT volumes based on dense matching of parts-based graphical models. Such a
system can be used to establish reliable correspondences in medical images which can
be useful on their own or as part of more complex processing e.g. atlas building. We
propose and investigate novel methods for efficiently optimizing parameters of appear-
ance models for landmark localization in 3D images. We also investigate the trade-off
between the number of model parameters and registration accuracy. We present results
for the localization of 22 landmarks in clinical 3D CT volumes of cancer patients and
optimization of part-specific patch scales. Over-fitting is likely due to an intrinsically
high variability of the data and a limited labeled training and test set, here 83 scans, so
we employ a rigorous bootstrap analysis to validate the results. The average mean and
maximum registration error over all landmarks is reduced by 31% and 25% for the opti-
mized model, compared to an empirically determined baseline. Additionally, we show a
significantly improved performance over standard methods as the number of free param-
eters increases from an isotropic patch scale shared by all parts, to specific anisotropic
patch scales learnt for each part in the model.

1 Introduction
Inter-subject matching and registration of whole-body oncology CT images is a challeng-
ing problem due to the intrinsically high variability of normal subjects and of pathological
structures. The motivation for our work is to develop algorithms for improved inter-subject
registration in medical imaging, primarily in whole-body PET/CT oncology applications.
In this work, we report a method to spatially register corresponding structures of multiple
patients for which there is only a very limited labeled training dataset, reflecting clinical re-
ality and limited clinician time. Our approach is based on a parts-based graphical model and
dense matching [7, 8].

Conventional approaches to determining correspondences in medical imaging typically
rely on registration methods. However, despite considerable advances in deformable regis-
tration, there still do not exist reliable methods for aligning whole-body images of differ-
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ent subjects. The performance of inter-subject registration could be improved by informa-
tive priors that capture the wide variability of structures. Active shape/appearance models
(ASM/AAM) have addressed this problem [5]. However, several authors have drawn atten-
tion to the limitations of such global models when applied to clinical images in which there
are significant local abnormalities [3, 11]. Graphical Models , developed in computer vision
(CV), offer an alternative approach to modeling flexible objects, one which does not impose
explicit global priors, and which is generally considered to be potentially more robust to
local abnormalities than global AAMs.

This paper proposes a method for reliably and accurately identifying landmarks in CT
images (Table 1) based on dense matching of parts-based graphical models. We develop
methods for efficiently optimizing the parameters of appearance models for improved land-
mark registration and report results with an increasing number of parameters in order to
investigate the trade-off between the number of model parameters and registration accuracy.
Our method improves dense matching of highly variable landmarks in clinical 3D images of
cancer patients with a limited labeled training set (tens of exemplars). Over-fitting is likely
to occur, and so we employ a rigorous bootstrap analysis to validate the results. In this
paper, we report results for optimizing appearance model parameters in parts-based graph-
ical models (part-specific patch scales). While we investigate a specific set of parameters
in a generative model, the core method can be used within standard discriminative learning
algorithms to optimize other model parameters for part localization.

1.1 Related Work

In medical image analysis, the attractive properties of parts-based graphical models have led
to them being adopted in spine labelling [6, 10]. Whole-body registration in clinical oncol-
ogy involves considerably more complex variability compared to organ-specific applications,
and necessitates the localization of both skeletal and soft tissues with widely different pat-
terns of variability. Optimal localization may demand specific settings for each part in the
model. For more than a few parameters, it quickly becomes intractable to evaluate all com-
binations empirically.

The problem of quantifying performance of local descriptors for standard computer vi-
sion applications has been studied extensively e.g. [9]. Recently, authors investigated local
appearance descriptors optimized for specific tasks [4] and appearance models trained with
standard boosting approaches were shown to provide improved parts-based localization [2].
In general, these methods use detection success (e.g., threshold on the bounding box over-
lap) as a surrogate for localization quality and maximize a score derived from the ROC or
precision-recall curve [1]. The suitability of such measures for dense localization of medical
landmarks with limited training data in 3D has however not been investigated.

Our application has a number of novel aspects compared to previous work, both in terms
of performance objectives and the image content. The variability of appearances in oncology
images is high, due to natural variability, aging-related changes, as well as the presence of
diseases and surgical interventions. The number of labeled training examples is low (in
tens). To make things worse, the uncertainty of labels is high due to differences of opinions
between radiologists as well as variability of repeated readings by the same expert (typically
30% plus in each case). Despite this, physicians demand low registration error within units
of voxels. Importantly, many landmarks are intrinsically poorly localized and it is impossible
to unambiguously declare where a landmark “ends’. Simplifying landmark localization into
a bounding box classification problem as in [2] may not be the ideal solution.
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1 C2 vertebra
2 C7 vertebra
3 top of the sternum
4 top right lung
5 top left lung
6 aortic arch
7 carina
8 lowest point of sternum (ribs)
9 lowest point of sternum (tip)
10 Th12 vertebra
11 top right kidney
12 bottom right kidney
13 top left kidney
14 bottom left kidney
15 L5 vertebra
16 | right spina iliaca anterior superior
17 | left spina iliaca anterior superior
18 right head of femur
19 left head of femur
20 symphysis
21 0s coccygeum
22 center of bladder

Table 1: Anatomical constraints. Colored shapes show valid constraint ranges, overlaid on
one training patient (black lines). Blue and green points represent the training and test points
respectively, plotted in the local coordinates of the neighboring landmarks.

2 Parts-Based Graphical Model for Inter-Patient

Registration
Our method is based on the Pictorial Structure (PS) model, which we briefly summarize here,
but refer reader to [7, 8] for an introduction. We describe specifics of our implementation in
Section 2.1. In Section 3, we outline a set of free parameters of the part appearance models
and introduce method to select their values to optimize landmark registration.

2.1 Pictorial Structure Representation

All landmarks share the same representation, which comprises a unary energy term for local
part appearance and a set of pair-wise terms for spatial compatibility. It takes the form of a
tree-structured undirected graphical model.

P(L|1,0) (Hp ([ lu)®* T P(li’lj\cij)> M)

L’,‘A,V_,'EG

In this equation, the first product term represents the cost of each landmark v; at location /;,
given the quality of match of patch appearance model u; to the image I. The second term
is the spatial compatibility cost of connected pairs of landmarks v;, v; placed at /;, [}, given
anatomical constraints c; ;. This equation can be rewritten as an energy minimization problem
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(a) Top femur head (b) Carina (c) Aortic arch (d) Th12 vertebra (e) Top of kidney

Figure 1: Example landmark posterior probability maps. Top: Coronal, Bottom: Sagittal
views. Images show a 16x16x16 cm region centered at the ground-truth location. Bright
colors correspond to high probability landmark placements ( 1). Dark colors correspond to
low probability landmark placements ( 0). White box indicates a patch scale s = 12 vox.

by taking its negative logarithm. &« = 1 is a normalization constant, selected empirically and
fixed for all parts and experiments.

Local Appearance. We model local tissue appearance in terms of local rectangular im-
age patches centered at landmark locations /; with a scale S; (x,y,z). Patches are projected
onto a set of n = 17 features that includes the mean template and the top 16 principal eigen-
patches obtained from the ground truth patches. Additional positive examples were gener-
ated from the annotated patches by rotations within anatomically plausible ranges. Negative
examples of non-landmark tissue ("background") are sampled from unlabelled tissue from
spherical regions within the segmented body outline. The variability of part appearance is
represented by the distribution of the coefficients, u; ~ N(M,X) for each part i, where M,X
are diagonal matrices. up; ~ N(M,X) is the model for the local "background".

Pair-wise Anatomical Constraints. Pair-wise spatial compatibility terms c¢;;(l;,1;) pe-
nalise part placements outside of the degree of anatomical variability exhibited within the
training database. The functional form of this spatial model is approximated as a distribu-
tion over Z ik = lix — lj x (the relative position vector of two parts i, j in training patient k).

P(l; ‘ lj))~U (min f, j7k,maxfi j,k); (range-minimum search within a bounding cube).

2.2 Learning Pictorial Structure Parameters from Training Images
The parameters of the PS are learnt from the training data, following the approach of [7].

In more detail: graph structure is a minimum spanning tree of spatially compact ("rigid")
constraints. The pair-wise spatial model is fitted by directly calculating the MLE estimate
for the vector Z;'jA,k =l;x —ljx (i.e. box-ranges).

Landmarks are specified by their [X,y,z] coordinates i.e. click-points in annotated training
images. The appearance model parameters u;,up; are obtained by direct calculation of the
mean and variance of the feature coefficients from the training patches. The part-specific
anisotropic patch scales S; (x,y,z), varied between 4 - 32 voxels, are free parameters that are
optimized separately (Section 3).

2.3 Matching Model to Unseen Patient Images

To find the best placements for the parts in a new image, we apply the appearance models to
the whole image using a sliding window approach. The log-likelihood ratios are combined
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using a Naive Bayes classifier to obtain the posterior probability for each landmark and slid-
ing window placements /;. For computational reasons, the dense descriptors were evaluated
in a cube-shaped region of interest centered around the ground-truth landmark placement
([65 x 65 x 65 voxels]) for parameter optimization (Figure 1).

Min-sum belief propagation algorithm is used for an exact, globally optimal fitting using
the (dense) appearance posterior probability maps and the pair-wise compatibility terms.
Pair-wise terms are evaluated using fast box range-minimum search.

3 Improving Part Localization by Optimizing Model

Parameters

In this section, we list free parameters of the appearance model introduced in Section 2.1
and then present existing and novel methods to select their values such that part registration
accuracy is improved.

Free parameters of appearance: The model has 6 key parameters per part that influence
its localization: patch scale S; (x,y,z) , number of features per part n; and the weight factor
« for each part i. In order to reduce the dimensionality of the problem given limited training
examples, we focus on learning the part scale S; (x,y,z) and keep the values n and & constant
for all parts (i.e. up to 66 free parameters in total).

Indeed, we could try to optimize the part scales by fitting the whole model and evaluating
all combinations of scales for all 22 parts. However, this would be computationally infeasible
for more than a few parameters. Therefore, we seek measures of descriptor goodness for our
application that can serve as a surrogate for the ultimate goal of improving the accuracy and
detection rate of the system. Generalization is an important criteria: Our training set exhibits
high variability, yet we have fewer labeled training images than parameters.

Ideal descriptor for landmark registration: An ideal part descriptor used for dense
matching of medical landmarks should have the following complementary properties:

A. Accuracy - local maxima close to the ground-truth part location.

B. Compactness - feature maps should be locally prominent, i.e. the descriptor response
map is peaked around ground-truth location, while weak signal is present elsewhere.

C. Consistency - the spatial distribution of local maxima over different patients with re-
spect to the part ground-truth location is spatially well constrained (i.e., low spatial
variability) and the intensity patterns in the feature maps are locally similar over dif-
ferent patients (i.e., low quantitative variability).

Although the latter two criteria have no direct connection to the desired performance objec-
tive (i.e., registration accuracy), compact and consistent maps should lead to better gener-
alization compared to minimizing error directly, when only limited training set is available.
Measures of descriptor quality for localization are described next.

3.1 Measuring descriptor quality for patch scale optimization

A measure should capture the complementary qualities of a descriptor (A-C). In previous
work in object recognition and localization that addresses this kind of problem, most authors
pose the task as binary classification. This means that a success threshold is imposed on
detections (e.g. area overlap of a bounding box) and a score that is derived from the ROC or
precision-recall curve is maximized [1, 4].
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Here, we evaluate these existing and new measures by applying them locally to dense
feature maps obtained from validation images with known ground-truth part locations. The
pseudo-algorithm for patch scale optimization with a quality measure Q works as follows:

FOR each landmark i
FOR patch scale S;(x,y,z) in a range (MinScale,MaxScale)
Generate patch examples from the training images
Learn appearance models u;,up;
Apply u;,up; to set of validation images I
Create a stack of local feature response maps fis, .«
Estimate a quality score Q; s, .. from the stack of all f; Sxxk
Find best scale S; pey (X,y,2) ~ argminQ; S(ey.2) )
Record the appearance models u; pegr, Upi pest fOr the best scale.

xyz

Combinations of Measures: The quality measures Q; s, . are estimated independently
and also as linear combinations of all possible triplets of measures. Our aim was to ascertain
if there was any value in combining scores, rather than trying to optimally combine them. In
more detail, for the combinations, the resulting score was obtained by the following simple
fusion. For each landmark and measure (in a triplet), we binned measure scores from all
scales Q; s, .. into a vector and sorted it in an ascending order (best to worst). The ranking
order was used to linearize the measure scores to [0,1]. The combined score was obtained as
the geometric mean of the three linearized scores i.e. all measures were given equal weight.

3.2 Quality measures for dense matching

We studied 15 measures and 120 combinations of triplets of complementary quality mea-
sures over different search space parameterizations (shared and part-specific isotropic and
anisotropic patch sizes). Overall, we performed 320 experiments using bootstrap analysis
with a total of over 7 million localized landmarks. For space reasons, we only report those
methods that performed the best.

Registration accuracy is measured by calculating the RMS distance between a maxima
in the descriptor response map and the ground-truth. This is performed for each landmark
and for each image k.

Epax = ZdZ ()_C’k%fGT) ’ (2
k
Since it cannot be determined which maxima the spatial model will ultimately select among
the many in the region of interest around the ground-truth, we investigated two variations: the
highest maxima in the region of interest, E,,,y, and the local maxima closest to the ground-
truth, Enearest-

Compactness is estimated as the Jensen-Shannon divergence between the feature re-
sponses and an "ideal" response modeled as a smoothed "Dirac" signal centered at the ground
truth (0 = 4 voxels). The responses are considered as spatial histograms. This is performed
for each landmark and for each image

CompN Z JSD ((afk)ﬁrwrm ’ (afidfal)ﬁnorm) (3)
k=1..N

The spatial histograms for the feature images f; and for the ideal response fij., are
obtained by taking the local maxima on a 5x5x5 grid centered at the ground-truth part
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location.ac = 125, =6 are selected empirically so as to assign more importance to voxels
with higher posterior probability. After the scaling, the histograms fi, figeqs are normalized.

Spatial consistency is estimated for each landmark by calculating the covariance matrix
¥ of error vectors pointing from the ground truth location to the best local match over all
images, and taking its determinant

SpCpax ~ det(X) “)

Similar to registration accuracy, we investigated two variations: the covariance of the
highest maxima in the region of interest, SpC,,,, , and the covariance of the local maxima
closest to the ground-truth, SpCheqrest-

Appearance consistency is estimated for each landmark as the pair-wise Jensen-Shannon
divergence between spatial histograms of feature responses over pairs of images &1,k

AppC ~ Z Z JSD <(afk1)ﬁnorm ‘ (aka)ﬁnOrmvaausx) ®))
k1=1.Nk2=1..N

The spatial histograms are obtained and normalized following the same procedure as in Eq.
3. W is an isotropic Gaussian kernel, which confers more weight to the consistency of spatial

bins close to the ground-truth location.

Standard object detection measures: We also investigate methods previously used for
performance evaluation or as optimization criteria for parts-based object localization algo-
rithms in the literature [4, 9]. We investigated the Area under ROC curve (AUC), Average
interpolated precision (AP) and the F-measure (F). Positive and negative examples are
defined analogically to the compactness measure. This means, for each landmark, positive
examples are all training image feature response map within 4 voxels RMS error from the
ground-truth. Negative examples are surrounding voxels in the region of interest, from all
images. Additionally, we calculated Detection Failure(Dy,;;) measure, defined as % detec-
tions with higher RMS error than 10 voxels from the ground truth across all images.

4 Data and Experiments

Our training and test set comprises 83 patients from a database of lung cancer PET/CT cases.
Contrast-enhanced, diagnostic-quality CT scans of the torso for each patient were acquired
using Siemens Biograph 16 and re-sampled to 2mm isotropic resolution.

22 clinical anatomical landmarks were selected by an expert nuclear medicine physi-
cian with 20 years experience, according to their utility as reference points for whole-body
PET/CT. Ground-truth landmark positions were annotated by a trainee medic, who followed
interactive guidance by the expert. The expert subsequently validated a subset of the annota-
tions, including a) All placements flagged as uncertain or abnormal b) All where the medic
disagreed with another trainee medic c) All in 30% of randomly selected patients.

The database was split into a training and validation set of 63 patient images and an
unseen test set of 20 images. For all images and 22 parts in the model (Table 1), feature
maps were generated by applying the appearance descriptors in a [65x65x65] local region
of interest around the ground truth locations. This was repeated for a range of isotropic and
anisotropic patch scales between [MinScale = 4, MaxScale = 32 voxels].

The quality measures were evaluated on validation image feature maps, in a local region
of interest sized [33x33x33] vox centered at ground-truth part locations. 20 maps were
randomly sampled from the training set with replacement and results averaged over n=50
bootstraps. For each part and measure, the patch size that minimized the quality measure
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was selected, following the algorithm in Section 3. Finally, the graphical model with spatial
priors and optimized part sizes was matched to the test set and localization errors recorded.

To assess the statistical reliability of the results, we computed summary statistics over
all bootstraps. This included the mean RMS error from the ground-truth part location (incl.
ranges and variance of this estimate) and the mean maximum RMS error. The baseline
reference is a fixed isotropic patch size shared by all parts, empirically selected in previous
development of the landmark detection system (s = 16 voxels).

5 Results

First, we present results which compare the various descriptor quality measures applied to
the problem of selecting the best part-specific anisotropic patch scale. The results show the
average localization errors, evaluated on the unseen test set, which arise from using patch
scales which are optimized on the training set using our algorithm. Both the best single
measures and combinations are shown.

Results are presented as statistics of the localization error over 50 bootstraps in Figure 2
and in Table 2. Several combinations achieved similar results, but here, for brevity, we only
include the best three C1{E,,x,SpC, F'}. C2{E};;;4x,SpC, AP},C3 {E}ax, AppC, Comp}.

1 22—5
= i
T NI
3 ! : 5
= R =) T T
58 ﬂ 5 .
a I 5 18F i -
s, | s B ! .
g ' - 5 L] : : ! T
E ‘ | ger ! I A
Js o S T H N
5 R e 5 =
g - T 1 - =14 i [ - H ﬂ -
5 - 5 = - G - e
- S IR e
R == R == R 12r SR -
4 s - N Lo i iR
AppC AUC AP F Comp Dfail SpC Emax C1 C2 C3 AppC AUC AP F Comp Dfal SpC Emax €1 €2 C3
(a) Average MeanRMS error (b) Average MaxRMS error

Figure 2: Summary statistics (over bootstraps). The columns show mean and max RMS
errors, based on part scales optimized using different measures and the best combinations
of measures. Red dashed line is the baseline reference error. Lower error means better
descriptor. Lower variance means more reliable descriptor.

Next, in Table 3, we show the effect of varying the number of parameters of the opti-
mization; from shared isotropic scale through to part-specific anisotropic scale. Results are
shown for the patch scales learned using the best of standard measures (F) , best of all (E;;x)
and the best combination (C1{E,4, SpC, F'}).

6 Discussion and Conclusion

We aim to establish correspondences for a set of clinical anatomical landmarks which are
guaranteed to be present in whole-body oncology images. Our method can compensate
for weak appearance descriptors with a high level of false positives and can disambiguate
repeated self-similar structures by mobilizing relations between landmarks in the image.
In order to achieve accurate and reliable localization, free parameters of part descriptors
need to be set appropriately. However, an exhaustive optimization of all part descriptors



POTESIL et al.: IMPROVED LANDMARK LOCALIZATION IN MEDICAL IMAGES 9

Table 2: Summary Statistics. The table shows statistics on error (columns) resulting from
optimizing anisotropic patch sizes using different quality measures (rows). Lower mean and
maximum error means better descriptor. Lower variance of error means more reliable de-
scriptor. Statistics are over all landmarks and bootstraps. CoV is the coefficient of variation.

Avg Max CoV Avg

(MeanRMS) (MeanRMS) (MeanRMS) (MaxRMS)

Baseline 6.6 - - 18.82
AppC 9.13 10.26 0.05 21.7
AUC 7.60 8.63 0.07 17.83
AP 5.37 6.92 0.08 16.90

F 5.37 6.56 0.09 16.20
Comp 5.24 5.66 0.03 14.78
Dyt 5.02 5.81 0.06 15.82
SpC 4.75 5.39 0.05 14.78
Eax 4.5 5.3 0.06 14.4
C1 4.48 4.83 0.04 14.27
C2 4.50 4.88 0.05 14.32
C3 4.51 5.07 0.05 14.23

in a graphical model presents a challenging problem. It is difficult to optimize so many
free parameters at once, especially considering we have less training examples at hand than
the free parameters. In this paper, we provide an algorithm that automatically selects scale
for each part in the model by measuring complementary aspects of descriptor quality i.e.
registration accuracy, compactness and consistency.

We show clear improvement in landmark localization with part scales optimized using
our algorithm. The average mean and maximum registration error over all landmarks is re-
duced by 31% and 25% for the optimized model compared to the baseline. Registration
accuracy (E,qy) provides a significantly lower error compared to other measures. How-
ever, the best combination of measures achieves even slightly lower mean error compared
to (Enay), with a significantly reduced coefficient of variation (4% vs. 6%) and lower max-
imum mean error (4.83 vs. 5.3 voxels). This suggests the combined measures provide an
improved generalization compared to minimizing the mean error directly. We observe that
some measures are not useful on their own, but improve generalization when combined with
others (e.g. Enq and F). Several other combinations performed nearly as well as the best, in
which Ej,, was complemented by a Cons measure and either Comp or D z,;; measure.

Some landmarks remain relative poorly localized. These include bottom sternum, a
highly variable structure with ambiguous ground-truth placements and the center of blad-
der, an intrinsically poorly localizable structure, due to variable fullness and appearance of
any contrast agent. Finally, the Th12 vertebra cannot be accurately localized as the available
constraints are too broad to disambiguate from unlabeled L1 and Th11.

There are a number of possibilities for future work. We did not attempt to combine op-
timally the measure scores. Clearly, some qualities are more important for localization and
learnt weights would make the improvement of combined measures even more pronounced.
Although we used a brute-force search over the parameters, standard optimization techniques
may be deployed by adopting the quality measures presented here as cost functions. Impor-
tantly, here we focus on optimizing patch size, but any other quantities may be optimized,
such as the number of features per part. Our approach takes no account of the spatial prior -
the graphical model structure and pair-wise constraints remain fixed. Indeed, if many more
confidently labeled training samples were available, once could contemplate optimizing the



10 POTESIL et al.: IMPROVED LANDMARK LOCALIZATION IN MEDICAL IMAGES

Table 3: Summary statistics. The table shows localization error as we increase the number
of free parameters (rows: from shared isotropic to part-specific anisotropic scale, for methods
F, E, . and C1). Columns show the mean and maximum error in voxels averaged over all
parts, images and bootstraps. "Improvement" is the average % decrease in the mean and max
error w.r.t. the baseline.

Avg  Improvement Avg  Improvement

(MeanRMS) (% per parts) (MaxRMS) (% per parts)

Baseline 6.6 - 18.82 -

Best shared scale 5.63 11 15.89 8
Standard measures (F)

Best isotropic part 5.63 10 15.86 11
Best anisotropic part 541 11 16.21 16
All measures (Epgy)

Best isotropic part 5.02 16 15.58 12
Best anisotropic part 4.5 25 14.4 23

Combinations (C1)

Best isotropic part 4.96 16 15.34 14

Best anisotropic part 4.48 26 14.27 24

part descriptors and the graphical model structure jointly, using measures presented here.
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