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Abstract

Local coordinate coding has recently been introduced to learning visual feature dic-
tionary and achieved top level performance for object recognition. However, the compu-
tational complexity scales linearly with the number of samples, so it does not scale up
well for large-scale databases. In this paper, we propose an online learning algorithm
which, at every iteration round, only processes one or a mini-batch of random samples
(e.g., two hundred samples). Our algorithm theoretically ensures the convergence to
the expected objective at infinity. Experiments on object recognition demonstrate the
advantage over the original local coordinate coding method in terms of efficiency with
comparable performance.

1 Introduction

Dictionary learning is a method to learn dictionary items adapted to data of a given dis-
tribution. It is shown that dictionary learned from data is more suited for vision task than
universal dictionaries, such as wavelet basis [7]. It plays an important role in many vision
tasks, e.g., object categorization and face recognition.

Recently, Local Coordinate Coding (LCC) has shown promising results on learning the
local geometry of data points [13]. LCC learns a set of anchor points or dictionary that best
reconstruct samples while preserving locality. It finds non-zero coefficients for dictionary
items that are neighbors of target samples. It has been successfully applied to learning visual
feature dictionary and achieved top level performance for object recognition and related
tasks, because visual features are not everywhere on the original high dimensional ambient
space but embedded in a low dimensional manifold.

One problem with the original local coordinate coding for learning a visual dictionary is
that the time complexity grows linearly with the number of samples. For large-scale datasets
of millions of samples, the computational cost becomes unacceptable. For example, it will
take several days to learn a 500-item dictionary from a million features. In this paper, we
propose an online version that only processes one or a small mini-batch of random samples
at every iteration round. This stochastic approach converges almost surely and can handle
large-scale datasets.
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In Section 2, we review recent methods on visual dictionary learning. In Section 3 we
formally introduce local coordinate coding and dictionary learning. Then, we illustrate our
online version large-scale algorithm in Section 4. Experiments are given in Section 5 and we
conclude in Section 6.

2 Related Work

Various formulations have been proposed to code data points on a high dimension space for
nonlinear function learning or classification. Vector Quantization (VQ), or using k-means to
learn data cluster centroids, is a simple and popular method in the bag-of-features framework
[9]. [8] proposed to use hierarchical k-means to learn a vocabulary tree that is scalable
for large dictionary. However, k-means and its variants [14] are best suited for Gaussian
distributed clusters while image patches and features are more likely to lie on a manifold.
Also, the quantization is limited in its expressive power and incurs high approximation error.
Recently, sparse coding is used in visual dictionary learning [12]. Sparse coding enforces
less constraint than k-means and achieves lower reconstruction error. To capture manifold
geometry of the data distribution, local coordinate coding [13] is proposed and it achieves
state-of-the-arts performance on PASCAL VOC 2009 challenge.

In dictionary learning framework, the most popular approach is to alternate between two
stages: 1) dictionary update and 2) approximating data with linear combination of dictionary
items. This is a batch algorithm - every time, all samples have to be processed to update the
dictionary. For sparse coding dictionary learning, K-SVD [1] generalizes k-means clustering
to sparse coding objective function. Recently, J. Mairal et al. [6] proposed an online learning
method for sparse coding which is closely related with ours. While our method uses the
online optimization technique in [6], it solves a different objective of local coordinate coding
[13].

3 Local Coordinate Coding and Dictionary Learning

In this section, we first introduce local coordinate coding which is suitable for learning on
the manifold and discuss its dictionary learning scheme.

3.1 Local Coordinate Coding

In local coordinate coding, we consider the problem of nonlinear function learning on a high
dimensional space given a set of sample pairs (x1,y1),. .., (Xn,Yn), Where x; € R™ are the data
points and y; = f(x;) are the corresponding function values. At first, we learn a set of bases
or dictionary D = [d; ...d;] € R™¥ such that samples can be linearly approximated by their
nearby bases. Given the dictionary, local coordinate coding finds a best coding a(x) € R
for a sample x that minimizes the reconstruction error and violation of locality constraint.

In general, we are interested in learning Lipschitz smooth functions defined on a man-
ifold. Although the phenomenon of “curse of dimensionality” exists for high dimensional
problems, the approximation upper bound is only proportional to the intrinsic dimensionality
of the manifold and is not related to the dimension of ambient space, thus efficient learning
can take place.
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Definition 1 [/3] (Lipschitz Smoothness) A function f(x) on R™ is (B,y)-Lipschitz smooth
if 1f(x) = fF()| < Bllx = || and | f(x) = f(&') = V(&) (x=2)| < V]lx = x'||* for any x and
x.

Suppose f(x) is a (B, 7)-Lipschitz smooth nonlinear function on R™ the linear approxi-
mation error of the function is bounded by the approximation error of the coding o(x), where
Yj a(x)’ = 1 ensures the shift-invariance requirement.

‘f(X) Y awifd)
J

< Blx—Da)|+vY e[ -pa)|* @

where a(x)/ is the j-th component of &(x) and d; is the j-th column of D.
For a practical objective function, note that Da(x) = x and there is only a difference of
constant by replacing the /;-norm with its square. Thus, we have

1 2 j 2
min = ||x—Dal|"+ ol|||d;—x 2
i 5 =D’ +1 ¥l l1d; x| @
where € = {D|||di|| < 1,i=1,...,k} is the convex feasible set of D. It is important to
constrain the columns of D because we can fix Da and scale D to make ¥, |o/|||d; — x|
arbitrarily small. The first term of the objective function measures reconstruction error and
the second term preserves locality in coding.

3.2 Dictionary Learning

Given all the samples, we want to learn a good dictionary that is adapted to the distribution
of the samples. An obvious approach is to minimize summed objective function of all data
samples over D and o simultaneously, i.e.

. 1 '
i (3150t g e+ N

where x; is the i-th sample and ¢; is its corresponding coding coefficient.

However, the above objective function is not jointly convex over D and &, which makes
it difficult to solve. Nevertheless, it is convex over D with fixed ¢ and vice versa. Therefore,
we can optimize one variable at a time by fixing another and alternate between the two
variables.

3.2.1 Sparse Coding

Specifically, when D is fixed, different ¢; can be decoupled into individual sparse coding
problems. And they can be further transformed into LASSO/LARS problem [10, 11], where
efficient implementation exists. Define a diagonal matrix A, whose diagonal elements are

2 . .
Ajj= de —xH and B = Ac. In addition, we assume d; # x, thus A~ exists. For fixed
dictionary D and sample x, optimizing over & can be transformed into optimizing over f3:

1
min 5 lv—DA”'B[*+ 1B )

where [|B]|; = ¥, |B7| denotes /;-norm. After solving B, we can obtain o = A~'B.
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3.2.2 Dictionary Update

After solving all ¢, optimizing over D is a constrained quadratic programming problem. To
see this, expanding the squares in Eq. 3 and dropping the terms without D leads to

| .
D argmmz <2 Hxi_Dai||2+l'LZ‘aij‘ de_xiH2>
j

pe? 3

=argmin ) <aTDTDa, X Do+ Y |of | (d] d; —2x] d; ))
De?¢ Jj

=argmin } | ( tr (D' Do) —tr (D" x;af ) + pir (D' DE;) —2ptr (DTxiéciT)>

De%
D'D (Z ool +2ux; )] —tr |DT (le-af +2/.indl»T>] 5)

1
=argmin— tr
De%

where @; is component-wise absolute value of ¢, i.e. Gcij = ‘ai’ ‘ and X; is a diagonal matrix

constructed from &;.

We can store two matrices A =Y, ;@] +2u¥; and B=Y,;x;a] +2pux;&! and use block-
coordinate descent to find the optimal D. In iteration k of dictionary update, we update the
Jj-th column dﬂf when other columns are fixed. Denote a; and b; as the j-th columns of

matrices A and B, a;; as the (j, j)-th element of A and the dictionary D¥ at the iteration k.
The updating rule is as follows

1
djt! =Tl (df — o (Par- bj)) ©)

where Iy (-) means projection onto the set €.

Another efficient method to update dictionary is stochastic gradient [2]. Instead of op-
timizing the function Eq. 3, stochastic gradient randomly selects a sample or a small batch
of samples at every iteration and update dictionary using projected gradient descent. This
method converges in expectation.

4 Online Dictionary Learning

Now we present the online version of dictionary learning with local coordinate coding. The
key ingredient is to randomly select data points in each iteration round and optimize dictio-
nary using cumulated history information and the algorithm can converge to expectation at
infinity.

In general, our ideal objective function is the expectation of local coordinate coding loss
function over the sample distribution. However, it is difficult to obtain and it is costly using
empirical mean to approximate the expectation in every iteration round. Therefore, we use
its upper bound which only requires a random sample per iteration. With this formulation,
the online algorithm can scale up to millions of data gracefully.

The ideal objective function for a single sample is as follows

1 A
f(D,x):moi£n§||x—DOC||2+[.LZ\OC]|de—xH2 N
J
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Algorithm 1 Online Dictionary Learning for LCC
input: Dy (initial dictionary), 4 and T (number of iterations)
initialize: Ay < 0,By < 0
fort— 1toT do
Draw a random sample x, from p(x).
Local coordinate coding: compute using Eqn. 4

1 ;
o = argmini ||Xf _Dt_lallz +“Z|a1‘ H(Dl‘—l)] —xtH2
@ J

Update Al‘ — At71 =+ 04 OC,T + 2[.1,2[
Update BZ‘ — Bt—l +x; (XIT + 2‘LLx, (_XIT.
Update dictionary using Alg. 2, such that

D, = argmin1 tr (DTDAI) —tr (DTBI)
De®

end for
return Dy

We also define its empirical mean over n samples

n

fa(D) = % Y f(D.x) (8)

i=1

Note that it is generally not convex in D because of the min operator on «.
The optimal dictionary is

D = argmin E, [f(D,x)] = argmin lim f,(D) 9
De¥ Deg "%

To enable online learning, we propose an upper bound for Eq. 8 that accumulates history
information and only processes one data point at a time. Suppose at iteration ¢, we randomly
draw a sample x; from the distribution p(x) and now have a sequence of random samples
X1,...,%. The objective function at iteration 7 is defined as

1 1 .
)3 <2 i = Deg|* + Y | ||d,-—xi||2> (10)
i=1 Jj

1
ot

And
1 .
oc,—argmm || — i,la\\2+u2|a/|H(Di,l)j—x,-Hz (11)
J

where (D;_1) ;j denotes the j-th column of D;_;. Note that ¢; is computed from D,_; and x;
and thus decouples from future dictionary values Dy, (k > t).
The dictionary update objective is thus

D, = argminf; (D) (12)
De?¢
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Algorithm 2 Dictionary Update by Coordinate Descent
input: D = [dy,...,d;] € R™* A=[ay,...,a ] € R, B=1[by,... 0] € R™K

repeat
for j — 1tokdo
Update d;
1
uj <—dj - —(Daj —bj)
ajj
i
di——-
7 max(1, [|uj]))
end for
until convergence
return D

It is easy to rewrite the expression into a quadratic programming problem as in Eq. 5 and
the problem can be solved using block-coordinate descent similarly.

Note that we do not need to store all the previous x; and ¢; but only two cumulated
matricesA =Y ; Ot,-Ot,-T +2u¥; and B =Y, x;0f +2ux;a .

Detailed algorithm for dictionary learning is given in Alg. 1 and coordinate descent dic-
tionary update is given in Alg. 2.

We can prove that f;(D,) — E, [f(D;,x)] converges almost surely to 0.

Proof Sketch

First, we will prove that the positive sequence u; = f;(D;) > 0 is a quasi-martingale by
showing that the expected sum of positive jumps E[E [u; | — u;|P]"] is bounded, where P;
denotes past information at iteration # and [-]* denotes the positive part of a number.

fi(D)—fi (D)

pEm) is bounded. We can go on to show that

Then, from this result we have } 7,
almost surely

fi(Dy) = fi(Dy) — 0 (13)

[—00

S Experiments

We conducted two experiments on object recognition to compare with the batch version.
From the experiments, we can see that our online version converges faster than the batch
counterpart and it achieves comparable performance on the final classification results.

5.1 Pascal VOC 2007

PASCAL VOC 2007 [4] contains 5011 images for training and 4952 for test, with a total of
20 categories. We extracted dense SIFT features with sizes 16 x 16, 24 x 24 and 32 x 32.
And we used 1 million of these SIFT features to learn the dictionary.

The number of dictionary items k was set to 500. And the trade-off coefficient u for
both algorithms was set to 0.15 to yield around 10 non-zero elements. Our algorithm used
a random mini-batch size of 256 at every iteration and iterated for 10,000 times while the
batch algorithm iterated for 15 times.
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Figure 1: Objective value v.s. time (a) VOC dataset; (b) Caltech 256 dataset.
Table 1: Averaged precision results of 20 categories for batch and online algorithms.
aero | bicyc | bird boat | bottle | bus car cat | chair | cow
Batch | 54.5 | 32.0 | 23.0 | 463 10.8 289 | 51.7 | 39.2 | 34.0 | 21.2
Online | 56.6 | 29.7 | 25.7 50.2 9.53 31.6 | 53.0 | 384 | 325 | 253
table | dog | horse | mbike | person | plant | sheep | sofa | train tv

Batch | 284 | 27.3 | 53.6 33.8 61.7 14.7 | 342 | 33.0 | 564 | 32.0
Online | 20.6 | 23.0 | 57.1 333 60.4 11.0 | 249 | 237 | 510 | 324

After learning the dictionary, we calculated the coding coefficients for SIFT features and
used spatial pyramid matching [12] with max pooling. Our spatial pyramid arrangement was
1x1,2x2and 3 x 1. The 8 x 500 dimensional image feature vector was fed into linear
SVM [3] for final classification, where we used 5-fold cross validation to determine the best
model parameter.

In Fig. 1 (a), we show the optimization process of batch and online algorithms. The
objective function value was evaluated at a separate test set of size 2000 after every iteration
round and the learning time is plotted on a logarithmic scale. The time was measured when
each algorithm ran on eight cores of 2.8GHz CPU. We can see that each round of the batch
algorithm took a long time while our online version converged much faster and arrived at
similar objective values orders of time earlier.

Finally, we show the averaged precision results of 20 categories for both algorithms in
Table 1. From these results, we can see that the performance of batch and online algorithms
is comparable — for some categories, batch version achieved higher precision while for other
categories, online method performed better.

5.2 Caltech 256

There are a total of 29,780 images in Caltech 256 [5] with 256 different classes. 1 million
random SIFT features with sizes 16 x 16, 24 x 24 and 32 x 32 were used to learn the dictio-
nary of size 500. The trade-off parameter p for both algorithms was also set to 0.15. The
mini-batch size of the online algorithm was 128. The online algorithm iterated for 10,000
times and the batch counterpart iterated for 10 times.

The objective values v.s. time of both algorithms are plotted in Fig. 1 (b). We can see
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Table 2: Averaged accuracies for batch and online algorithm on Caltech 256 dataset.
# of training images 45 60

Batch 36.31 38.94
Online 36.42  39.07

that the first iteration of batch algorithm took more than 10,000 seconds (the corresponding
time of the left end of the blue curve). By then the online algorithm had already achieved
far lower objective function value. The batch algorithm achieved similar objective function
value only after 100,000 seconds. From this, it is clear that our online algorithm can scale
up to millions of data points gracefully.

We used similar setting as that in the last experiment to construct image feature vectors
from SIFT coding coefficients. And we used two kinds of training/test split: in one scheme,
45 images from each category were randomly selected as training set and the rest constituted
test set; in the other scheme, 60 images from each category were used for training and the
rest for test. Each scheme was repeated for five times and the averaged results are reported
in Table 2. Compared with batch algorithm, our online learning scheme achieves similar
results.

6 Conclusion

We proposed an online dictionary learning algorithm for local coordinate coding. By ran-
domly selecting samples at each iteration round and accumulating history information, our
algorithm can scale up gracefully to millions of samples and is guaranteed to converge al-
most surely. We demonstrated the performance speed-up over the batch version in our object
recognition experiments.

In future work, we will investigate how to choose the number of iterations for a specific
training size. Also, how to incorporate discriminative information in dictionary learning is
also an important issue.
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