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Abstract

In this paper, we propose a novel manifold alignment method by learning the un-
derlying common manifold with supervision of corresponding data pairs from different
observation sets. Different from the previous algorithms of semi-supervised manifold
alignment, our method learns the explicit corresponding projections from each original
observation space to the common embedding space everywhere. Benefiting from this
property, our method could process new test data directly rather than re-alignment. Fur-
thermore, our approach doesn’t have any assumption on the data structures, thus it could
handle more complex cases and get better results compared with previous work. In the
proposed algorithm, manifold alignment is formulated as a minimization problem with
proper constraints, which could be solved in an analytical manner with closed-form so-
lution. Experimental results on pose manifold alignment of different objects and faces
demonstrate the effectiveness of our proposed method.

1 Introduction
In many real-world applications, the same object (e.g., pose, face) may have different ob-
servations (or descriptions) which are highly related but sometimes look different from each
other, such as the videos of the same scene from different viewpoints, the image sequences
of the same action for different objects, the video and audio segments that come from the
same circumstances, and so on. How to find the correspondence between the data points
of different observation sets is a hot topic. Due to the fact that different datasets might be
located in different high-dimensional spaces and represented by different features, it is diffi-
cult to match the data in their original observation spaces. From the geometric perspective,
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each observation set (e.g., a sequence of face images under various poses) forms a manifold.
Given that these observations are from the same object, it is reasonable to assume that some
common features across different observation spaces can be represented in an underlying
common manifold. The shared low-dimensional embeddings, as better descriptions of the
intrinsic geometry and relationship between different manifolds, are expected to benefit the
subsequent task of datasets alignment.

In order to obtain the intrinsic low-dimensional representations of samples, many algo-
rithms of manifold learning have been proposed in the literature. Traditional techniques such
as principle components analysis (PCA) have been extensively used for linear dimensionality
reduction. Other proposed linear methods include locally preserving projection (LPP) [7],
neighbors preserving embedding (NPE) [8], and so on. Whereafter, some nonlinear meth-
ods such as locally linear embedding (LLE) [12], ISOMAP [15], and Laplacian Eigenmaps
[4, 5] have shown promising results in nonlinear dimensionality reduction problems. Note
that most algorithms of manifold learning are to find the intrinsic low-dimensional embed-
dings of a given dataset from only one high-dimensional observation. In this paper, we focus
on the task of finding the underlying common manifold of multiple observation datasets, i.e.,
aligning different manifolds.

During the past several years, manifold alignment has attracted much attention in the
community of machine learning and computer vision. In [10], a semi-supervised nonlinear
manifold alignment (NMA) algorithm is proposed. Shon et al. [11] propose an algorithm
based on Gaussian process regression to learn the shared latent structure between datasets
and apply it in image synthesis and robotic imitation. In [6], the authors propose to align the
data manifolds into the predefined target coordinates. Xiong et al. [17] propose a method
of manifold alignment with loose semi-supervised priors and formulate manifold alignment
as an energy optimization problem. However, all above alignment methods cannot process
new test data without retraining. More recently, some researchers propose a new two-stage
algorithm for manifold alignment based on Procrustes analysis [16], which can be general-
ized to new data points. Nevertheless, Procrustes analysis, which only learns single affine
transformation between one manifold and others, has limitations on the strong assumption
on data structures. In addition, Verbeek [18] propose a shared manifold method with the
perspective of probability theory. The method, however, restricted to one-to-one mappings,
and so cannot model multi-modal conditionals.

In this paper, we propose a novel manifold alignment method via corresponding projec-
tions under the semi-supervised learning setting. In our algorithm, manifold alignment is
formulated as a minimization problem with constraints. Our optimization could be solved in
an analytical manner with closed-form solution. The proposed method is more general in the
following three senses: (1) It learns explicit corresponding mappings from different mani-
folds to the underlying common embeddings, thus overcome the limitation of most previous
methods on out-of-sample extension [3] ability. (2) It defines the corresponding mappings
for different datasets at the same time and doesn’t have any assumption on the data struc-
tures, hence could deal with more complex cases than single affine transformation used in
Procrustes analysis. (3) It could be easily extended to multi-manifolds alignment. In experi-
ments, pose alignment on image sequences of different objects and face images, are used to
verify the efficiency of our algorithm.

The rest of this paper is organized as follows. In Section 2, we first claim some notations
and then we present our manifold alignment method in details. Section 3 shows the experi-
mental results on two pose datasets of different objects and face images. Finally, Section 4
gives some concluding remarks.
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2 Manifold Alignment via Corresponding Projections
2.1 Notations

Let us represent two datasets in matrix forms as X = [x1 x2 · · · xM] and Y = [y1 y2 · · · yN ],
where each column vector xi ∈ ℜDx (y j ∈ ℜDy ) denotes a data point in the input high-
dimensional observation space. M and N indicate the numbers of the data points involved
in the two data sets, respectively. The unknown shared low-dimensional embeddings of X
and Y are denoted by X̃ = [x̃1 x̃2 · · · x̃M] and Ỹ = [ỹ1 ỹ2 · · · ỹN ], respectively. Suppose K la-
beled correspondence pairs are given in set C, i.e., (i, j) ∈C if xi corresponds to yi. With the
prior knowledge, the original data sets can be separated into labeled and unlabeled subsets,
denoted as X = [Xl , Xu] and Y = [Yl , Yu].

2.2 Overview Formulation

The target of our manifold alignment method is to learn the corresponding mappings which
could project data points from different datasets to the intrinsic common embeddings. By
doing this, we can compare the embeddings of the two datasets instead of their original
high-dimensional representations.

More specifically, our algorithm learns mapping matrices Px and Py for data sets X and
Y, respectively. In mapping matrices learning, two important issues should be taken into
consideration: (1) The common embeddings should be consistent with the given labeled
correspondence pairs; (2) The common embeddings should preserve the local geometric
structures in all original input spaces. We achieve the overall objective by minimizing the
following energy function:

J(Px,Py) = J(Px,Py,Xl ,Yl)+αxJ(Px,X)+αyJ(Py,Y). (1)

There are three terms in this energy function defined above. The first term J(Px,Py,Xl ,Yl) is
called the correspondence preserving term. And the other two terms, J(Px,X) and J(Py,Y),
are the manifold regularization terms which are used to preserve the intrinsic manifold struc-
tures of different datasets. The parameters αx and αy are used to balance the three terms and
further influence the relative contribution of local structure preserving in each observation
space.

2.3 Energy Function Definition

In the objective function formulated in Eq.( 1), the term of correspondence preserving cost
is defined according to the given correspondence pairs as

J(Px,Py,Xl ,Yl) = ∑
(i, j)∈C

||PT
x xi−PT

y y j||2. (2)

As claimed in subsection 2.1, set C contains all index pairs (i, j) of given correspondences.
Ideally, on the underlying common manifold, the embedded labeled pairs (PT

x xi,PT
y y j) should

be as close as possible. Therefore, we formulate the correspondence preserving term as a
sum of squared differences (SSD) between the embeddings of all labeled correspondence
data pairs.
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Inspired by LLE [12] method, the two manifold regularization terms are defined as

J(Px,X) =
M

∑
i=1
||PT

x xi− ∑
k∈Nx(i)

wx
ikPT

x xk||2 (3)

and

J(Py,Y) =
N

∑
j=1
||PT

y y j− ∑
k∈Ny( j)

wy
jkPT

y yk||2. (4)

Here, wx
ik is calculated through reconstructing the data point xi using its k-nearest neighbors

xk (k ∈ Nx(i)) by minimizing ||xi− ∑
k∈Nx(i)

wx
ikxk||2 s.t. ∑

k∈Nx(i)
wx

ik = 1, and wy
jk could be got in

a similar manner. In the proposed method, we try to preserve the local topological structure
of each input observation space.

Ultimately, we formulate the energy function as the following form:

J(Px,Py)

= ∑
(i, j)∈C

||PT
x xi−PT

y y j||2 +αx
M
∑

i=1
||PT

x xi− ∑
k∈Nx(i)

wx
ikPT

x xk||2

+αy
N
∑
j=1
||PT

y y j− ∑
k∈Ny( j)

wy
jkPT

y yk||2.

(5)

The objective function gives a high penalty when the labeled correspondence pairs from
different spaces or neighboring data points in the same space are mapped far apart. There-
fore, it tries to find an underlying common manifold which reflects the intrinsic relationships
and preserves the local geometric structures of data in the original spaces. In the following
subsection, the solution of this optimization problem will be described.

2.4 Optimization Solution
Let us express the objective function Eq.( 5) using a complete matrix form. More specifically,
the correspondence preserving term defined in Eq.( 2) is

J(Px,Py,Xl ,Yl) =
M

∑
i

N

∑
j
||PT

x xi−PT
y y j||2Lxy

i j . (6)

Here the matrix Lxy with size of M×N contains the prior information on labeled correspon-
dence pairs. The correspondence indicator matrix is defined as

Lxy
i j =

{
1 (i, j) ∈C
0 otherwise . (7)

Then, we can have the matrix form of Eq.( 6) as follows:

J(Px,Py,Xl ,Yl)= Tr
(
PT

x XLxXT Px +PT
y YLyYT Py

)
−Tr

(
PT

x XLxyYT Py +PT
y Y(Lxy)T XT Px

)
.

(8)
Here, Tr(·) is the trace operator. The matrices Lx and Ly are defined based on the matrix Lxy

as
Lx

ii = ∑
j

Lxy
i j and Ly

j j = ∑
i

Lxy
i j , (9)
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and the off diagonal entries in the two matrices are all zero.
As for the two manifold preserving terms, we have similar matrix forms as

J(Px,X) =
M

∑
i=1
||PT

x xi−∑
j

wx
i jP

T
x x j||2 = Tr

(
PT

x XMxXT Px
)

(10)

and

J(Py,Y) =
N

∑
i=1
||PT

y yi−∑
j

wy
i jP

T
y y j||2 = Tr

(
PT

y YMyYT Py
)
. (11)

The matrix Mx with size of M×M and My with size of N×N serve to preserve the local
linear structures between data points in X and Y, respectively. Similar representations are
used in LLE [12] and NPE [8]. As for Mx, it could be presented as

Mx = (I−Wx)T (I−Wx). (12)

In Eq.( 12), the reconstruction weights matrix Wx is defined as

Wx
i j =

{
wx

i j j ∈ Nx(i)
0 otherwise

, (13)

and j ∈ Nx(i) means that x j belongs to xi’s k-nearest neighbors. The matrix My is defined in
a similar way on Y.

Combining the new forms of all objective terms, the energy function is rewritten as

J(Px,Py)
= J(Px,Py,Xl ,Yl)+αxJ(Px,X)+αyJ(Py,Y)

= Tr
(

[ PT
x X PT

y Y ]
[

Lx +αxMx −Lxy

−(Lxy)T Ly +αyMy

][
XT Px
YT Py

])
.

(14)

Let P =
[

Px
Py

]
, Z =

[
X

Y

]
and A =

[
Lx +αxMx −Lxy

−(Lxy)T Ly +αyMy

]
. Consequently, we

obtain a concise form as
J(Px,Py) = Tr

(
PT ZAZT P

)
. (15)

Finally, we add the constraints to achieve scaling and translation invariance, and solve the
optimization problem of manifold alignment by minimizing

J(Px,Py) s.t.
1

M +N
PT ZZT P = I and PT Ze = 0, (16)

where I is the identity matrix with size of d× d, and e = [1 1 · · · 1]T is the vector of ones
with M +N entries.

Let E = ZAZT and F = ZZT . The solution to the optimization problem with respect to
P is given by the second to (d+1)-th smallest generalized eigenvectors p with Ep = λFp.

Note that p =
[

px
py

]
and d represents the dimensionality of the common embeddings.

The final mapping matrices Px and Py are composed of the corresponding d eigenvectors,
p’s. More specifically, Px with size of Dx× d is constructed by arraying the px’s as its d
column vectors and Py with size of Dy×d is constructed by arraying the py’s as its d column
vectors.
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During the optimization process, the following issue should be concerned. In general
case, F = ZZT is singular. There are two ways to assure F invertible. One is to incorporate a
regularization term such as F = ZZT +κI, where κ is set to a small positive value (e.g.,κ =
10−6). The other is to carry out dimensionality reduction on X and Y respectively, such as
PCA, to reduce the singularity of matrix F.

2.5 The algorithm

The algorithm of manifold alignment via correspondence projection is summarized in Ta-
ble 1. In our method, two separate mapping matrices Px and Py for different datasets are
computed at the same time by solving a convex optimization problem in Step 1. Then the
learned explicit projections can be easily generalized to new test data in Step 2. Therefore,
our method is very effective by learning mappings from each input space to the shared low-
dimensional space explicitly and simultaneously. Furthermore, it is suitable for real-time
systems due to the efficiency.

Input: Datasets X = [Xl ,Xu], Y = [Yl ,Yu], given correspondence pairs in C,
and query data point y.

Output: y’s counterpart in X.
Step 1: Learning mapping matrices Px and Py according to Eq. (16);
Step 2: Compute the embedding for y by ỹ = PT

y y;
Compute the embeddings for X by X̃ = PT

x X;
Step 3: Find ỹ’s the nearest neighbor x̃i from the column vectors of X̃;
Step 4: xi corresponding to x̃i is treated as the counterpart for y.

Table 1: Algorithm of manifold alignment via correspondence

3 Experiments
In this Section, we verify the efficiency of our manifold alignment method on multi-pose
sequences alignment problem. In our experiments, we attempt to align the images with
various poses of different objects and persons.

3.1 Experimental Settings

For comprehensive comparison, the proposed manifold alignment algorithm is compared
with some state-of-the-art methods on two multi-pose datasets: COIL-20 [2] and FACE-10.

As illustrated in Figure 1(a), the first pose dataset, COIL-20, contains 1440 images of 20
different objects. The pose coordinates for each object specify the camera movements around
it, which are at interval of 5◦ and contain 72 different sites in total, as shown in Figure 1(c).
The examples of the first object are shown in Figure 1(b). In our experiment, 32 images for
each observation are selected evenly for the training set and the rest 40 images for testing.
The second pose dataset, FACE-10, contains face image sequences with various poses (from
−90◦ to +90◦ as indicated in Figure 1(e)) of 10 persons. Two example sequences are illus-
trated in Figure 1(d). In our experiment, 37 images for each observation are selected evenly
for the training set and the rest images for testing. We use the image intensity as the feature.
The images in COIL-20 and FACE-10 are of size 16×16 and 32×32 pixels, respectively.
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The matrix xM with size of MM ×  serves to preserve the 
local topological relationships between data points in X. 
Similarly, yM with size of NN ×  serves to preserve the 
local topological relationships between data points in Y. 
Similar representations are used in LLE [12] and NPE [8]. 
As for xM , our definition is presented as 

)()( xTxx WIWIM −−= .                  (14) 

In Eqn. (14), the reconstruction weights matrix xW is 

defined as 
⎩
⎨
⎧ ∈

=
otherwises

iNj xx
ijx

ij 0
)(w

W  and )(iNj x∈  means 

that jx  belongs to ix ’s k-nearest neighbors. The matrix 
y
ijM  is defined in a similar way on Y. 

Combining the new forms of all objective terms, we get 
 

( , )

( , , , ) ( , ) ( , )

Tr [ ] .

x y

l l
x y x x y y

x x xy T
x xT T

x y xyT y y T
y y

J

J J Jα α

α
α

= + +

⎛ ⎞⎡ ⎤ ⎡ ⎤+ −
= ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟− +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

P P

P P X Y P X P Y

L M L X P
P X P Y

L L M Y P

. 

(15) 
 

Let ⎥
⎦

⎤
⎢
⎣

⎡
=

y

x

P
P

P , ⎥
⎦

⎤
⎢
⎣

⎡
=

Y
X

Z  and 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−

−+
= y

y
yTxy

xyx
x

x

MLL

LML
A

α

α , 
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y

x

p
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The algorithm of finding the corresponding data point in 

one dataset given any data point in the other dataset is 
summarized in Table 1. Once we calculate the mapping 
matrices xP  and yP , as described in Section 3.3. The given 
query data point y can be any unlabeled data point in 

uY or a new test data point. Through this algorithm, we 
infer the underlying parameters for the unlabeled or new 
test data points by the parameters of X. 

 

                    (a)                                           (b) 

Figure 1. (a) Sample images for 20 subjects in COIL-20 
dataset; (b) one example sequence in COIL-20 dataset; (c) 
two example sequences of ‘person_01’ and ‘person_02’ in 
FACE-10. 

(c) 

(a)
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Step 1:  Learning mapping matrices  xP  and yP ; 

Step 2:  Compute the embedding for y  by yPy T
y=~ ; 

Compute the embeddings for X  by XPX T
x=

~ ; 
Step 3:  Find y~ ’s the nearest neighbor ix~  from the column 

vectors of X~ ; 
Step 4:  xi corresponding to ix~  is treated as the counterpart 

for y.  

 
The algorithm of finding the corresponding data point in 

one dataset given any data point in the other dataset is 
summarized in Table 1. Once we calculate the mapping 
matrices xP  and yP , as described in Section 3.3. The given 
query data point y can be any unlabeled data point in 

uY or a new test data point. Through this algorithm, we 
infer the underlying parameters for the unlabeled or new 
test data points by the parameters of X. 

 

                    (a)                                           (b) 

Figure 1. (a) Sample images for 20 subjects in COIL-20 
dataset; (b) one example sequence in COIL-20 dataset; (c) 
two example sequences of ‘person_01’ and ‘person_02’ in 
FACE-10. 
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4. Experimental Results 
In this section, we verify the efficacy of our manifold 
alignment method on the image datasets of various poses 
and illuminations. In the experiments of the pose sequences 
alignment, we attempt to align the images with various 
poses from different persons and even from different 
objects. In the illumination manifold alignment, our 
method is used to align the image sets with various 
illumination conditions from different persons. In all 
experiments, we set 1== yx αα . 

4.1. Pose Manifold Alignment 
As for pose alignment, we use two pose datasets in our 

experiments. As shown in Figure 1(a), the first pose dataset, 
COIL-20 dataset [2], contains 1440 images of 20 different 
objects. As shown in Figure 2(a), the pose coordinations for 
each object specify the camera movements around it, which 
are at interval of 5o and contain 72 different sites in total. 
The examples of the first object are shown in Figure 1(b). 
The second pose dataset, FACE-10, contains face image 
sequences with various poses (from -90o to +90o as shown 
in Figure 2(b)) of 10 persons. Two example sequences are 
shown in Figure 1 (c). In experiments, we use the image 
intensity as the feature. The images in COIL-20 and 
FACE-10 are of size 16×16 and 32×32 pixels, respectively. 

For pose manifold alignment, we compare the results of 
our algorithm with some previous methods. In the 
experiments, the image sequences with various poses from 
different persons or objects are aligned with the priors of 
some labeled correspondence pairs. Some visual results are 
shown in Figure 3. In Figure 3 (a) and (b), we present the 
low-dimensional manifold of the object ‘duck’ and that of 
the object ‘block’, which are computed by NPE with k=2 
neighbors [8] independently. From the results of alignment 

in Figure 3 (c)-(e), we can see that the semi-supervised 
algorithm [10] and our algorithm align the two manifolds 
well. However, the method based on Procrustes analysis 
[16] fails because the relationship between two embedded 
manifolds is beyond affine transformation. 

 
For clearer comparison of the alignment results, we inlay 

two aligned sequences on two concentric circles. And then, 
we connect the points in the sequence Y with their 
corresponding points in the sequence X in the common 
embedding space. As shown in Figure 4, the ‘blue bold’ 
lines connect the labeled point pairs. The ‘red’ lines denote 
the connections for aligned unlabeled points. In perfect 
alignment, the connections should be along the direction of 
radius (of the rays emitting from the center of the 
concentric circles). Under this visual criterion, our method 
get the comparable and even better performance compared 
with the semi-supervised algorithm [10]. Meanwhile, 

(c)                              (d)                              (e) 

Figure 3.  Pose manifold alignment. (a) The manifold of the 
object ‘duck’; (b) the manifold of the object ‘block’; (c) the 
aligned results by the algorithm in [10]; (d) the aligned results 
by the algorithm in [16]; (e) our results. Eight ‘filled’ circles 
in (c)-(e) denote the labeled correspondence pairs.  

            (a)                                          (b) 

Figure 2. The coordination settings of pose and illumination dataset. (a) Coordinations of the poses in COIL-20 dataset [2]; (b)
coordinations of the poses in FACE-10 dataset; (c) coordinations of the light source directions in the Extended Yale Face Database B [13].
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The matrix xM with size of MM ×  serves to preserve the 
local topological relationships between data points in X. 
Similarly, yM with size of NN ×  serves to preserve the 
local topological relationships between data points in Y. 
Similar representations are used in LLE [12] and NPE [8]. 
As for xM , our definition is presented as 

)()( xTxx WIWIM −−= .                  (14) 

In Eqn. (14), the reconstruction weights matrix xW is 

defined as 
⎩
⎨
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=
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W  and )(iNj x∈  means 

that jx  belongs to ix ’s k-nearest neighbors. The matrix 
y
ijM  is defined in a similar way on Y. 

Combining the new forms of all objective terms, we get 
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we have a clear form for the objective function as  
( )PZAZPPP TT

yxJ Tr),( = .                 (16) 

Therefore, we solve the optimization problem of manifold 
alignment by minimizing  

),( yxJ PP  s.t. IPZZP =
+

TT

NM
1  and 0=ZePT ,   (17) 

where I  is the identity matrix with size of dd × , and 
T]111[=e is the vector of ones with NM +  entries.  

Let TZAZE = and TZZF = . The solution to the 
optimization problem with respect to P  is given by the 
2-th to (d+1)-th the smallest generalized eigenvectors p  

with FpEp λ= . Note that ⎥
⎦

⎤
⎢
⎣

⎡
=

y

x

p
p

p  and d represents 

the dimensionality of the common embeddings.  
The final mapping matrices Px and Py are composed from 

the corresponding d  eigenvectors, p’s. More specifically, 
Px with size of dDx ×  is constructed by arraying the px’s as 
its d column vectors. Py with size of dDy ×  is constructed 

by arraying the py’s as its d column vectors. Some details 
about our formulation is presented in Section Appendix. 

During the optimization process, the following issue 
should be concerned. In general case, TZZF =  is singular. 
There are two ways to assure F  invertible. One is 

regularization such as IZZF κ+= T , where κ is set to a 
small positive value (e.g., 610−=κ ). Other alternates 
include carrying out dimensionality reduction on X and Y 
respectively, such as PCA, to reduce the singularity of 
matrix F. 

3.4. The algorithm  
Table 1. Algorithm of finding correspondences 

 

Input:   Datasets ][ ul XXX = , ][ ul YYY = and C 
Query data point y  

Output: y’s counterpart in X 

Step 1:  Learning mapping matrices  xP  and yP ; 

Step 2:  Compute the embedding for y  by yPy T
y=~ ; 

Compute the embeddings for X  by XPX T
x=

~ ; 
Step 3:  Find y~ ’s the nearest neighbor ix~  from the column 

vectors of X~ ; 
Step 4:  xi corresponding to ix~  is treated as the counterpart 

for y.  

 
The algorithm of finding the corresponding data point in 

one dataset given any data point in the other dataset is 
summarized in Table 1. Once we calculate the mapping 
matrices xP  and yP , as described in Section 3.3. The given 
query data point y can be any unlabeled data point in 

uY or a new test data point. Through this algorithm, we 
infer the underlying parameters for the unlabeled or new 
test data points by the parameters of X. 

 

                    (a)                                           (b) 

Figure 1. (a) Sample images for 20 subjects in COIL-20 
dataset; (b) one example sequence in COIL-20 dataset; (c) 
two example sequences of ‘person_01’ and ‘person_02’ in 
FACE-10. 
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4. Experimental Results 
In this section, we verify the efficacy of our manifold 
alignment method on the image datasets of various poses 
and illuminations. In the experiments of the pose sequences 
alignment, we attempt to align the images with various 
poses from different persons and even from different 
objects. In the illumination manifold alignment, our 
method is used to align the image sets with various 
illumination conditions from different persons. In all 
experiments, we set 1== yx αα . 

4.1. Pose Manifold Alignment 
As for pose alignment, we use two pose datasets in our 

experiments. As shown in Figure 1(a), the first pose dataset, 
COIL-20 dataset [2], contains 1440 images of 20 different 
objects. As shown in Figure 2(a), the pose coordinations for 
each object specify the camera movements around it, which 
are at interval of 5o and contain 72 different sites in total. 
The examples of the first object are shown in Figure 1(b). 
The second pose dataset, FACE-10, contains face image 
sequences with various poses (from -90o to +90o as shown 
in Figure 2(b)) of 10 persons. Two example sequences are 
shown in Figure 1 (c). In experiments, we use the image 
intensity as the feature. The images in COIL-20 and 
FACE-10 are of size 16×16 and 32×32 pixels, respectively. 

For pose manifold alignment, we compare the results of 
our algorithm with some previous methods. In the 
experiments, the image sequences with various poses from 
different persons or objects are aligned with the priors of 
some labeled correspondence pairs. Some visual results are 
shown in Figure 3. In Figure 3 (a) and (b), we present the 
low-dimensional manifold of the object ‘duck’ and that of 
the object ‘block’, which are computed by NPE with k=2 
neighbors [8] independently. From the results of alignment 

in Figure 3 (c)-(e), we can see that the semi-supervised 
algorithm [10] and our algorithm align the two manifolds 
well. However, the method based on Procrustes analysis 
[16] fails because the relationship between two embedded 
manifolds is beyond affine transformation. 

 
For clearer comparison of the alignment results, we inlay 

two aligned sequences on two concentric circles. And then, 
we connect the points in the sequence Y with their 
corresponding points in the sequence X in the common 
embedding space. As shown in Figure 4, the ‘blue bold’ 
lines connect the labeled point pairs. The ‘red’ lines denote 
the connections for aligned unlabeled points. In perfect 
alignment, the connections should be along the direction of 
radius (of the rays emitting from the center of the 
concentric circles). Under this visual criterion, our method 
get the comparable and even better performance compared 
with the semi-supervised algorithm [10]. Meanwhile, 

(c)                              (d)                              (e) 

Figure 3.  Pose manifold alignment. (a) The manifold of the 
object ‘duck’; (b) the manifold of the object ‘block’; (c) the 
aligned results by the algorithm in [10]; (d) the aligned results 
by the algorithm in [16]; (e) our results. Eight ‘filled’ circles 
in (c)-(e) denote the labeled correspondence pairs.  

            (a)                                          (b) 

Figure 2. The coordination settings of pose and illumination dataset. (a) Coordinations of the poses in COIL-20 dataset [2]; (b)
coordinations of the poses in FACE-10 dataset; (c) coordinations of the light source directions in the Extended Yale Face Database B [13].
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(e)
Figure 1: (a) Sample images for 20 subjects in COIL-20 dataset; (b) one example sequence
in COIL-20 dataset; (c) coordinates of the poses in COIL-20 dataset; (d) two example se-
quences of ‘person_01’ and ‘person_02’ in FACE-10;(e) coordinates of the poses in FACE-
10 dataset.

We compare our proposed algorithm with some baseline and previous related meth-
ods. More specifically, five approaches are included in our comparative study: (1) Base-
line method which directly uses the original space for alignment; (2) Locality Preserving
Projections (LPP) [7]; (3) Nonlinear Manifold Alignment(NMA) [10]; (4) Linear Procrustes
Analysis (LPA) [16] ; (5) Our approach. For the last four methods mentioned above, after
finding the shared embedding space, a simple nearest neighbor (NN) classifier is performed
and the nearest pairs are aligned as the counterparts. In the next subsection, both qualitative
and quantity are conducted. Due to space limitation, the Euclidean and LPP results are omit-
ted for qualitative comparisons. While in quantity analysis, we will give comparative studies
for all mentioned methods.

There are a few parameters involved in our experiments. As for the number of neighbors
k used to calculate the weights in Eq.(5), we empirically set k = 2 for COIL-20 and k = 6 for
FACE-10, respectively. The dimensionality of the shared common embeddings is fixed to 5.
And the balance coefficients αx and αy are set to some values in (0,1] which can be finally
determined by cross-validation. In the comparative studies, the common parameters of other
methods are set the same as ours.

3.2 Pose Alignment Results and Analysis
For clearer comparison of the alignment results, we inlay two aligned sequences on two con-
centric circles. And then, we connect the points in the sequence Y with their corresponding
points in the sequence X. As shown in Figure 2, the ‘blue bold’ lines connect the labeled
point pairs. The ‘red’ lines denote the connections for aligned unlabeled points. In perfect
alignment, the connections should be along the direction of radius (of the rays emitting from
the center of the concentric circles). Under this visual criterion, our method get the com-
parable and even better performance compared with the semi-supervised algorithm NMA.
Meanwhile, LPA cannot give satisfactory results for this situation. As illustrated in Fig-
ure 2(b), even if there are only 4 labeled pairs, our method still achieves good results. The
more pairs given, the better performance our method achieves. Some results of face image
sequences with various poses are shown in Figure 3.

One advantage of our algorithm is that it could deal with new test data in a direct way as
mentioned in subsection 2.5. In Figure 4, the ‘blue bold’ lines connect the labeled point pairs;
the ‘black dashed’ lines denote the connections for the aligned unlabeled data in training set;
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algorithm using Procructes analysis cannot give 
satisfactory results for this situation. Note that, even if there 
are only 4 labeled pairs, our method still gets good results. 
The more pairs given, the better performance our method 

achieves. Some results of face image sequences with 
various poses are shown in Figure 5. 

One advantage of our algorithm is that it could deal with 
new test data in direct way as mentioned in Section 3.4. In 
Figure 6, the ‘blue bold’ lines connect the labeled point 
pairs; the ‘black dashed’ lines denote the connections for 
the aligned unlabeled data in training set; and the ‘red’ lines 
denote the connections for the aligned new test data. From 
Figure 6, we can see that both results of our method for the 
unlabeled training data and the new test data are more 
accurate and stable than the algorithm based on Procrustes 
analysis. 

 
 

Table 2. The mean errors for pose estimation 
 

),,/(),( n
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u
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u
x KKKKK  

(defined in Section 2.1) 
COIL-20 
(d=4,k=2) 

FACE-10 
(d=4,k=2) 

(8,64)/( 8,64, 0) 
E1(15.78) 
E2(34.64) 
E3(13.72) 

 

(13,125)/(13,else, 0)  
E1(  2.81) 
E2(36.86) 
E3(  2.76) 

(13,125)/( 13, 24,else)  E2(32.07, 26.49)
E3(  3.26,   5.56)

 

Some quantity results of pose estimation are shown in 
Table 2. E1, E2 and E3 are the mean errors of pose 
estimation corresponding to the results of the nonlinear 
alignment algorithm [10], the algorithm base on Procrustes 
analysis [16], and our method, respectively. In Ex( . ), the 
former value is the mean error of the estimations on the 
unlabeled data, and the latter one is the mean error of 
estimations on the new test data. If there is only one value, 
it only includes the former mean error. From the results, we 
can see that our method get better performance than the 
comparative methods. In (d=4, k=2), d represents the 
dimensionality of the common embeddings and k is the 
number of neighbors used to calculate the weights in Eqn. 
(7). In the experiments, we use the first sequence (‘duck’, 
‘person_01’) as X and other sequences as Y.  

 

Figure 6. The results for handling new test data. (a) Examples 
in two sequences; (b) the results of method using Procrustes 
analysis in [16]; (c) our results. 

(a)                      (b)                                     (c)

Figure 4. The results of aligning ‘duck’ and ‘block’ inlayed on 
two concentric circles. The rows from top to bottom 
correspond the results of the algorithms in [10], [16], and our 
method, respectively. For column (b), (c) and (d), the number 
of the labeled correspondence pairs K = 4, 8, 12.  

(a)                 (b)                           (c)                           (d)             

(a)                          (b)                                           (c) 

Figure 5. The results of aligning ‘person_01’ (138 images) and 
‘person_02’ (134 images) inlayed on two concentric circles. 
The rows from top to bottom correspond the results of the 
algorithms in [10], [16], and our method, respectively. For 
column (b) and (c), the number of the labeled correspondence 
pairs K = 7, 13. 

Figure 2: The results of aligning ‘duck’ and ‘block’ inlayed on two concentric circles.
(a) Examples in two sequences; The rows from top to bottom correspond the results of the
algorithms NMA [10], LPA [16], and our method, respectively. For each column (b), (c) and
(d), the number of the labeled correspondence pairs is 4, 8 and 12, respectively.
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algorithm using Procructes analysis cannot give 
satisfactory results for this situation. Note that, even if there 
are only 4 labeled pairs, our method still gets good results. 
The more pairs given, the better performance our method 

achieves. Some results of face image sequences with 
various poses are shown in Figure 5. 

One advantage of our algorithm is that it could deal with 
new test data in direct way as mentioned in Section 3.4. In 
Figure 6, the ‘blue bold’ lines connect the labeled point 
pairs; the ‘black dashed’ lines denote the connections for 
the aligned unlabeled data in training set; and the ‘red’ lines 
denote the connections for the aligned new test data. From 
Figure 6, we can see that both results of our method for the 
unlabeled training data and the new test data are more 
accurate and stable than the algorithm based on Procrustes 
analysis. 

 
 

Table 2. The mean errors for pose estimation 
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E1(15.78) 
E2(34.64) 
E3(13.72) 

 

(13,125)/(13,else, 0)  
E1(  2.81) 
E2(36.86) 
E3(  2.76) 

(13,125)/( 13, 24,else)  E2(32.07, 26.49)
E3(  3.26,   5.56)

 

Some quantity results of pose estimation are shown in 
Table 2. E1, E2 and E3 are the mean errors of pose 
estimation corresponding to the results of the nonlinear 
alignment algorithm [10], the algorithm base on Procrustes 
analysis [16], and our method, respectively. In Ex( . ), the 
former value is the mean error of the estimations on the 
unlabeled data, and the latter one is the mean error of 
estimations on the new test data. If there is only one value, 
it only includes the former mean error. From the results, we 
can see that our method get better performance than the 
comparative methods. In (d=4, k=2), d represents the 
dimensionality of the common embeddings and k is the 
number of neighbors used to calculate the weights in Eqn. 
(7). In the experiments, we use the first sequence (‘duck’, 
‘person_01’) as X and other sequences as Y.  

 

Figure 6. The results for handling new test data. (a) Examples 
in two sequences; (b) the results of method using Procrustes 
analysis in [16]; (c) our results. 

(a)                      (b)                                     (c)

Figure 4. The results of aligning ‘duck’ and ‘block’ inlayed on 
two concentric circles. The rows from top to bottom 
correspond the results of the algorithms in [10], [16], and our 
method, respectively. For column (b), (c) and (d), the number 
of the labeled correspondence pairs K = 4, 8, 12.  

(a)                 (b)                           (c)                           (d)             

(a)                          (b)                                           (c) 

Figure 5. The results of aligning ‘person_01’ (138 images) and 
‘person_02’ (134 images) inlayed on two concentric circles. 
The rows from top to bottom correspond the results of the 
algorithms in [10], [16], and our method, respectively. For 
column (b) and (c), the number of the labeled correspondence 
pairs K = 7, 13. 

Figure 3: The results of aligning ‘person_01’ (138 images) and ‘person_02’ (134 images)
inlayed on two concentric circles. (a) Examples in two sequences; The rows from top to
bottom correspond the results of the algorithms in NMA [10], LPA [16], and our method,
respectively. For each column (b) and (c), the number of the labeled correspondence pairs is
7 and 13, respectively.
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and the ‘red’ lines denote the connections for the aligned new test data. From Figure 4, we
can see that both results of our method for the unlabeled training data and the new test data
are more accurate and stable than the algorithm LPA.
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algorithm using Procructes analysis cannot give 
satisfactory results for this situation. Note that, even if there 
are only 4 labeled pairs, our method still gets good results. 
The more pairs given, the better performance our method 

achieves. Some results of face image sequences with 
various poses are shown in Figure 5. 

One advantage of our algorithm is that it could deal with 
new test data in direct way as mentioned in Section 3.4. In 
Figure 6, the ‘blue bold’ lines connect the labeled point 
pairs; the ‘black dashed’ lines denote the connections for 
the aligned unlabeled data in training set; and the ‘red’ lines 
denote the connections for the aligned new test data. From 
Figure 6, we can see that both results of our method for the 
unlabeled training data and the new test data are more 
accurate and stable than the algorithm based on Procrustes 
analysis. 

 
 

Table 2. The mean errors for pose estimation 
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E2(34.64) 
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(13,125)/(13,else, 0)  
E1(  2.81) 
E2(36.86) 
E3(  2.76) 

(13,125)/( 13, 24,else)  E2(32.07, 26.49)
E3(  3.26,   5.56)

 

Some quantity results of pose estimation are shown in 
Table 2. E1, E2 and E3 are the mean errors of pose 
estimation corresponding to the results of the nonlinear 
alignment algorithm [10], the algorithm base on Procrustes 
analysis [16], and our method, respectively. In Ex( . ), the 
former value is the mean error of the estimations on the 
unlabeled data, and the latter one is the mean error of 
estimations on the new test data. If there is only one value, 
it only includes the former mean error. From the results, we 
can see that our method get better performance than the 
comparative methods. In (d=4, k=2), d represents the 
dimensionality of the common embeddings and k is the 
number of neighbors used to calculate the weights in Eqn. 
(7). In the experiments, we use the first sequence (‘duck’, 
‘person_01’) as X and other sequences as Y.  

 

Figure 6. The results for handling new test data. (a) Examples 
in two sequences; (b) the results of method using Procrustes 
analysis in [16]; (c) our results. 

(a)                      (b)                                     (c)

Figure 4. The results of aligning ‘duck’ and ‘block’ inlayed on 
two concentric circles. The rows from top to bottom 
correspond the results of the algorithms in [10], [16], and our 
method, respectively. For column (b), (c) and (d), the number 
of the labeled correspondence pairs K = 4, 8, 12.  

(a)                 (b)                           (c)                           (d)             

(a)                          (b)                                           (c) 

Figure 5. The results of aligning ‘person_01’ (138 images) and 
‘person_02’ (134 images) inlayed on two concentric circles. 
The rows from top to bottom correspond the results of the 
algorithms in [10], [16], and our method, respectively. For 
column (b) and (c), the number of the labeled correspondence 
pairs K = 7, 13. 

Figure 4: The results for handling new test data. (a) Examples in two sequences; (b) the
results of method LPA [16]; (c) our results.

Some quantity results on both databases are summarized in Table 2 and Table 3. In the
experiments, we use the first sequence (‘duck’, ‘person_01’) as X and other sequences as
Y. For each configuration with different label correspondence pairs, we report the average
pose estimation errors and standard derivations. As shown in these two tables, the baseline
method, which doesn’t consider the relationship between the two manifolds, yields poor per-
formance. The classical LPP method, which can uncover the essential manifold structure in
a single observation space, fails to well handle the scenario of two (or multiple) observation
spaces. The NMA method achieve relative good results, but it cannot process the new test
data since no explicit mapping is learned. Meanwhile, LPA still cannot give satisfactory
results in these situations since the relationship between two embedded manifolds is beyond
affine transformation. Among all methods mentioned above, the proposed method achieves
the lowest errors. And the error rates decreases with the increasing number of the labeled
correspondence pairs.

Method ] labels = 8 ] labels = 16
Unlabeled Error Test Error Unlabeled Error Test Error

Baseline 36.897±3.516 42.237±3.770 36.694±4.546 42.237±3.770
LPP 34.540±5.74 39.855±5.34 34.540±5.74 39.855±5.34

NMA 18.43±11.202 - 12.65±12.766 -
LPA 18.706±9.787 17.625±8.32 17.747±8.998 17.434±8.707
Ours 15.57±12.079 14.533±9.147 10.674±10.443 9.934±7.834

Table 2: The pose estimation errors (unit: degree) on COIL-20 data set (mean±std-dev)

Method ] labels = 7 ] labels = 13
Unlabeled Error Test Error Unlabeled Error Test Error

Baseline 62.326±7.516 68.945±15.409 62.079±7.912 68.945±15.409
LPP 37.616±19.496 39.344±16.925 37.616±19.496 39.344±16.925

NMA 9.089±0.411 - 3.366±0.228 -
LPA 32.348±15.277 28.555±13.805 32.273±17.245 28.549±15.431
Ours 6.933±0.585 14.438± 4.313 2.630±0.544 9.032±5.065

Table 3: The pose estimation errors (unit: degree) on FACE-10 face data set (mean±std-dev)
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3.3 Extensions
So far, all experiments performed in this paper are limited to the alignment of two manifolds.
Actually, our method could be extended to multi-manifold alignment according to the for-
mulation in Section 2. In Figure 5, we show an illustrative example result of three-manifold
alignment. Note that, LPA method cannot possess this natural extension.
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4.2. Illumination Manifold Alignment  
In the Extended Yale Face Database B [13], there are 

about 64 images with different light source directions in 
azimuth (from -130o to +130o) and elevation (for -45o to 
+90o) for each person. As shown in Figure 2(c), we inlay 
the images of the first person into a coordination system 
according the azimuth and elevation degrees of the light 
source directions. 

In this experiment, we align the images with various 
light source directions from different persons, given 
additional labeled correspondence pairs. In Figure 7, we 
show the results of three comparative methods on two 
alignment tasks, corresponding to the upper and lower rows 
in this figure, respectively. Each circle corresponds to two 
specific face images from two persons, which have the 
same illumination condition (i.e., light source directions in 
azimuth and elevation). Once a face image is aligned with 
another one of different person, we connect the 
corresponding two circles in the coordination system. In 
this manner, the perfect alignment should have no 
connections, since two face images viewed under the same 
illumination condition should be aligned to each other. 
From Figure 7, we can see that our method achieves 
comparable and even better performance compared with 
the semi-supervised alignment algorithm proposed in [10]. 
Meanwhile, there are many connections in the results of the 
algorithm using Procrustes analysis, indicating worse 
results than that of the methods in [10] and ours.  

5. Extensions and Discussions 

5.1. Extension for Multi-Manifold Alignment  
So far, all experiments performed in this paper are 

limited to alignment of two manifolds. Actually, our 

method could be extended to multi-manifold alignment 
according to the formulation in Section 3. In Figure 8, we 
show the result of three-manifold alignment. Note that, the 
algorithm proposed in [16] does not possess this natural 
extension. 

 

5.2. Possible Nonlinear Extension 
The main weakness of the proposed method is that our 

algorithm is linear which will fail in presence of some 
highly nonlinear problems. Fortunately, kernel technique 
provides a possible way to extend our method into 
nonlinear version. As proposed in [14], our optimization 
function will involve inner product terms. The new 
formulation could then use the kernel trick to implicitly 
perform manifold alignment in the kernel-induced feature 
space. In this case, kernel and its parameter selection (or 
kernel learning) is a key problem to solve. In our future 
work, we will devote to applying our manifold alignment 
method with kernel extension on some special nonlinear 
alignment problems. 

6. Concluding Remarks 
This paper proposes a novel manifold alignment method. 

Different from most previous work, our method learns the 

Figure 8. The results of alignment for three datasets. (a) 
Examples in three sequences; (b) our alignment results. 

(a)                          (b)  

(a)                                  (b)                                                                   (c)                                                                 (d) 
Figure 7. The results of the illumination manifold alignment. (a) Examples in two sets; (b) the results of semi-supervised algorithm in 
[10]; (c) the results of the algorithm based on Procrustes analysis in [16]; (d) our results. The nine ‘filled’ circles denote the labeled 
point pairs. 

Figure 5: The results of alignment for three datasets. (a) Examples in three sequences; (b)
our alignment results.

4 Concluding Remarks
This paper proposes a novel manifold alignment method via corresponding projections. Dif-
ferent from most previous work, our method learns the explicit corresponding projections
from each observation space to the common embedding space. Benefiting from the explicit
projections, our method could handle new test data directly rather than re-aligning the mani-
folds. Compared with the method based on some assumptions about the structure of dataset
(e.g., alignment using Procrustes analysis), our method could deal with more complex real-
world alignment problem. Besides, our method could be easily extended to align multi-
manifolds. Experimental results on pose datasets of various objects and face images show
that our method gets comparable and even better performance than other related alignment
methods.
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