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Abstract

In this paper, we propose a novel manifold alignment method by learning the un-
derlying common manifold with supervision of corresponding data pairs from different
observation sets. Different from the previous algorithms of semi-supervised manifold
alignment, our method learns the explicit corresponding projections from each original
observation space to the common embedding space everywhere. Benefiting from this
property, our method could process new test data directly rather than re-alignment. Fur-
thermore, our approach doesn’t have any assumption on the data structures, thus it could
handle more complex cases and get better results compared with previous work. In the
proposed algorithm, manifold alignment is formulated as a minimization problem with
proper constraints, which could be solved in an analytical manner with closed-form so-
Iution. Experimental results on pose manifold alignment of different objects and faces
demonstrate the effectiveness of our proposed method.

1 Introduction

In many real-world applications, the same object (e.g., pose, face) may have different ob-
servations (or descriptions) which are highly related but sometimes look different from each
other, such as the videos of the same scene from different viewpoints, the image sequences
of the same action for different objects, the video and audio segments that come from the
same circumstances, and so on. How to find the correspondence between the data points
of different observation sets is a hot topic. Due to the fact that different datasets might be
located in different high-dimensional spaces and represented by different features, it is diffi-
cult to match the data in their original observation spaces. From the geometric perspective,
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each observation set (e.g., a sequence of face images under various poses) forms a manifold.
Given that these observations are from the same object, it is reasonable to assume that some
common features across different observation spaces can be represented in an underlying
common manifold. The shared low-dimensional embeddings, as better descriptions of the
intrinsic geometry and relationship between different manifolds, are expected to benefit the
subsequent task of datasets alignment.

In order to obtain the intrinsic low-dimensional representations of samples, many algo-
rithms of manifold learning have been proposed in the literature. Traditional techniques such
as principle components analysis (PCA) have been extensively used for linear dimensionality
reduction. Other proposed linear methods include locally preserving projection (LPP) [7],
neighbors preserving embedding (NPE) [8], and so on. Whereafter, some nonlinear meth-
ods such as locally linear embedding (LLE) [12], ISOMAP [15], and Laplacian Eigenmaps
[4, 5] have shown promising results in nonlinear dimensionality reduction problems. Note
that most algorithms of manifold learning are to find the intrinsic low-dimensional embed-
dings of a given dataset from only one high-dimensional observation. In this paper, we focus
on the task of finding the underlying common manifold of multiple observation datasets, i.e.,
aligning different manifolds.

During the past several years, manifold alignment has attracted much attention in the
community of machine learning and computer vision. In [10], a semi-supervised nonlinear
manifold alignment (NMA) algorithm is proposed. Shon ef al. [11] propose an algorithm
based on Gaussian process regression to learn the shared latent structure between datasets
and apply it in image synthesis and robotic imitation. In [6], the authors propose to align the
data manifolds into the predefined target coordinates. Xiong et al. [17] propose a method
of manifold alignment with loose semi-supervised priors and formulate manifold alignment
as an energy optimization problem. However, all above alignment methods cannot process
new test data without retraining. More recently, some researchers propose a new two-stage
algorithm for manifold alignment based on Procrustes analysis [16], which can be general-
ized to new data points. Nevertheless, Procrustes analysis, which only learns single affine
transformation between one manifold and others, has limitations on the strong assumption
on data structures. In addition, Verbeek [18] propose a shared manifold method with the
perspective of probability theory. The method, however, restricted to one-to-one mappings,
and so cannot model multi-modal conditionals.

In this paper, we propose a novel manifold alignment method via corresponding projec-
tions under the semi-supervised learning setting. In our algorithm, manifold alignment is
formulated as a minimization problem with constraints. Our optimization could be solved in
an analytical manner with closed-form solution. The proposed method is more general in the
following three senses: (1) It learns explicit corresponding mappings from different mani-
folds to the underlying common embeddings, thus overcome the limitation of most previous
methods on out-of-sample extension [3] ability. (2) It defines the corresponding mappings
for different datasets at the same time and doesn’t have any assumption on the data struc-
tures, hence could deal with more complex cases than single affine transformation used in
Procrustes analysis. (3) It could be easily extended to multi-manifolds alignment. In experi-
ments, pose alignment on image sequences of different objects and face images, are used to
verify the efficiency of our algorithm.

The rest of this paper is organized as follows. In Section 2, we first claim some notations
and then we present our manifold alignment method in details. Section 3 shows the experi-
mental results on two pose datasets of different objects and face images. Finally, Section 4
gives some concluding remarks.
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2 Manifold Alignment via Corresponding Projections

2.1 Notations

Let us represent two datasets in matrix forms as X = [x; xp --- xy] and Y = [y; y2 - - yn],
where each column vector x; € RPx (y; € RP») denotes a data point in the input high-
dimensional observation space. M and N indicate the numbers of the data points involved
in the two data sets, respectively. The unknown shared low-dimensional embeddings of X
and Y are denoted by X = [&; X, --- %y/] and Y = [§; ¥2 - - - §w], respectively. Suppose K la-
beled correspondence pairs are given in set C, i.e., (i, j) € C if x; corresponds to y;. With the
prior knowledge, the original data sets can be separated into labeled and unlabeled subsets,
denoted as X = [X!, X*] and Y = [Y/, YY].

2.2 Overview Formulation

The target of our manifold alignment method is to learn the corresponding mappings which
could project data points from different datasets to the intrinsic common embeddings. By
doing this, we can compare the embeddings of the two datasets instead of their original
high-dimensional representations.

More specifically, our algorithm learns mapping matrices P, and P, for data sets X and
Y, respectively. In mapping matrices learning, two important issues should be taken into
consideration: (1) The common embeddings should be consistent with the given labeled
correspondence pairs; (2) The common embeddings should preserve the local geometric
structures in all original input spaces. We achieve the overall objective by minimizing the
following energy function:

J(P,P) =J (P, P, X Y) + (P, X) + ] (P, Y). (1)

There are three terms in this energy function defined above. The first term J(P,, Py, Xy )is
called the correspondence preserving term. And the other two terms, J(Py,X) and J(P,,Y),
are the manifold regularization terms which are used to preserve the intrinsic manifold struc-
tures of different datasets. The parameters ¢, and ¢, are used to balance the three terms and
further influence the relative contribution of local structure preserving in each observation
space.

2.3 Energy Function Definition

In the objective function formulated in Eq.( 1), the term of correspondence preserving cost
is defined according to the given correspondence pairs as

J(P, P X Y) = Y [[PIx;—Plyjl|*. 2)
(i,j)eC

As claimed in subsection 2.1, set C contains all index pairs (i, j) of given correspondences.
Ideally, on the underlying common manifold, the embedded labeled pairs (P x;, P)T, y;) should
be as close as possible. Therefore, we formulate the correspondence preserving term as a
sum of squared differences (SSD) between the embeddings of all labeled correspondence
data pairs.
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Inspired by LLE [12] method, the two manifold regularization terms are defined as

J(Py,X) = ZHPTXI Y wiPlx]? 3)
keN*(i)
and
y T 2
Y)=Y [IPly;— ) wiPivl*. @)
Jj=1 keNY (j)

Here, w_is calculated through reconstructing the data point x; using its k-nearest neighbors
xi (k € N*(i)) by minimizing ||x;— ¥ wix/|?st. ¥ wi=1,and wy could be got in
keN*(i) keN*(i)
a similar manner. In the proposed method, we try to preserve the local topological structure
of each input observation space.
Ultimately, we formulate the energy function as the following form:

J(Px,Py)
M
= Y [PIxi—Plyj|P+a ¥ [[PIxi— ¥ wiPIx||?
(i, j)eC i=1 kEN*(i) ()
+0‘y H Z ijP}Tyk||2~

The objective function gives a high penalty when the labeled correspondence pairs from
different spaces or neighboring data points in the same space are mapped far apart. There-
fore, it tries to find an underlying common manifold which reflects the intrinsic relationships
and preserves the local geometric structures of data in the original spaces. In the following
subsection, the solution of this optimization problem will be described.

2.4 Optimization Solution

Let us express the objective function Eq.( 5) using a complete matrix form. More specifically,
the correspondence preserving term defined in Eq.( 2) is

M N
J(P Py XY = Y ) [[PTx; — PYy,|PL. (©)

Here the matrix L™ with size of M x N contains the prior information on labeled correspon-
dence pairs. The correspondence indicator matrix is defined as

m_{ Lo @jec %)

2 0 otherwise
Then, we can have the matrix form of Eq.( 6) as follows:

J(P., Py X' Y') =Tr (PIXL'X"P, + P] YL'Y'P,) — Tr (PIXLVY' P, + PLY(LV)"X"P,).

®)
Here, Tr(+) is the trace operator. The matrices L* and L are defined based on the matrix L*
as

zszj’ and L}, = ZLW ©
J
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and the off diagonal entries in the two matrices are all zero.
As for the two manifold preserving terms, we have similar matrix forms as

J(P,X) = Z||PTXZ ZM/;JP){XJW Tr (PLXM*XP,) (10)
and
J(P,,Y) = Z||PTy, Zw” il =Tr (P YMY'P,). (11)

The matrix M* with size of M x M and MY with size of N X N serve to preserve the local
linear structures between data points in X and Y, respectively. Similar representations are
used in LLE [12] and NPE [8]. As for M*, it could be presented as

M = (I- W) (1-W"). (12)

In Eq.( 12), the reconstruction weights matrix W* is defined as

wh,j € N(i)
X, = 2
Wij { 0 otherwise ’ (a3)

and j € N*(i) means that x; belongs to x;’s k-nearest neighbors. The matrix M is defined in
a similar way on Y.
Combining the new forms of all objective terms, the energy function is rewritten as

J(Py,Py)
:J(PmPy,XZ,Y’)+axJ(Px7X) + o, J(Py,Y) (14)
L* + a,M* —LY x’p
_ T T X X
Tr([ PIX PTY | { A LT } { iy D
| Py X | X4+ oM* —LY
LetP = [ P, },Z_ [ Y } and A = [ _(ny)T L'+ oM } Consequently, we

obtain a concise form as
J(Py,P,) =Tr (PTZAZ'P). 15)

Finally, we add the constraints to achieve scaling and translation invariance, and solve the
optimization problem of manifold alignment by minimizing

1
J(P.,Py) st. ——P'ZZ"P =1 and P"Ze=0, (16)
M+N

where I is the identity matrix with size of d x d, and e = [1 1 --- 1]7 is the vector of ones
with M + N entries.

Let E=ZAZ" and F = ZZ” . The solution to the optimization problem with respect to
P is given by the second to (d+1)-th smallest generalized eigenvectors p with Ep = AFp.
Px
p

Note that p = and d represents the dimensionality of the common embeddings.

y
The final mapping matrices P, and P, are composed of the corresponding d eigenvectors,
p’s. More specifically, P, with size of D, x d is constructed by arraying the p,’s as its d
column vectors and Py, with size of Dy X d is constructed by arraying the p,’s as its d column
vectors.
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During the optimization process, the following issue should be concerned. In general
case, F = ZZ7 is singular. There are two ways to assure F invertible. One is to incorporate a
regularization term such as F = ZZ7T + I, where «x is set to a small positive value (e.g..K =
107%). The other is to carry out dimensionality reduction on X and Y respectively, such as
PCA, to reduce the singularity of matrix F.

2.5 The algorithm

The algorithm of manifold alignment via correspondence projection is summarized in Ta-
ble 1. In our method, two separate mapping matrices Py and P, for different datasets are
computed at the same time by solving a convex optimization problem in Step 1. Then the
learned explicit projections can be easily generalized to new test data in Step 2. Therefore,
our method is very effective by learning mappings from each input space to the shared low-
dimensional space explicitly and simultaneously. Furthermore, it is suitable for real-time
systems due to the efficiency.

Input: Datasets X = [X’,X“], Y = [Y/, Y*], given correspondence pairs in C,
and query data point y.
QOutput: y’s counterpart in X.
Step 1: Learning mapping matrices P, and P, according to Eq. (16);
Step 2: Compute the embedding fory by § = P)T,y;
Compute the embeddings for X by X = PI'X;
Step 3: Find §’s the nearest neighbor %; from the column vectors of X;
Step 4: x; corresponding to X; is treated as the counterpart for y.

Table 1: Algorithm of manifold alignment via correspondence

3 Experiments

In this Section, we verify the efficiency of our manifold alignment method on multi-pose
sequences alignment problem. In our experiments, we attempt to align the images with
various poses of different objects and persons.

3.1 Experimental Settings

For comprehensive comparison, the proposed manifold alignment algorithm is compared
with some state-of-the-art methods on two multi-pose datasets: COIL-20 [2] and FACE-10.
As illustrated in Figure 1(a), the first pose dataset, COIL-20, contains 1440 images of 20
different objects. The pose coordinates for each object specify the camera movements around
it, which are at interval of 5° and contain 72 different sites in total, as shown in Figure 1(c).
The examples of the first object are shown in Figure 1(b). In our experiment, 32 images for
each observation are selected evenly for the training set and the rest 40 images for testing.
The second pose dataset, FACE-10, contains face image sequences with various poses (from
—90° to +90° as indicated in Figure 1(e)) of 10 persons. Two example sequences are illus-
trated in Figure 1(d). In our experiment, 37 images for each observation are selected evenly
for the training set and the rest images for testing. We use the image intensity as the feature.
The images in COIL-20 and FACE-10 are of size 16 x 16 and 32 x 32 pixels, respectively.
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Figure 1: (a) Sample images for (22) subjects in COIL-20 dataset; (b) one example sequence
in COIL-20 dataset; (c) coordinates of the poses in COIL-20 dataset; (d) two example se-
quences of ‘person_01" and ‘person_02’ in FACE-10;(e) coordinates of the poses in FACE-
10 dataset.

We compare our proposed algorithm with some baseline and previous related meth-
ods. More specifically, five approaches are included in our comparative study: (1) Base-
line method which directly uses the original space for alignment; (2) Locality Preserving
Projections (LPP) [7]; (3) Nonlinear Manifold Alignment(NMA) [10]; (4) Linear Procrustes
Analysis (LPA) [16] ; (5) Our approach. For the last four methods mentioned above, after
finding the shared embedding space, a simple nearest neighbor (NN) classifier is performed
and the nearest pairs are aligned as the counterparts. In the next subsection, both qualitative
and quantity are conducted. Due to space limitation, the Euclidean and LPP results are omit-
ted for qualitative comparisons. While in quantity analysis, we will give comparative studies
for all mentioned methods.

There are a few parameters involved in our experiments. As for the number of neighbors
k used to calculate the weights in Eq.(5), we empirically set k = 2 for COIL-20 and k = 6 for
FACE-10, respectively. The dimensionality of the shared common embeddings is fixed to 5.
And the balance coefficients @, and ¢, are set to some values in (0, 1] which can be finally
determined by cross-validation. In the comparative studies, the common parameters of other
methods are set the same as ours.

3.2 Pose Alignment Results and Analysis

For clearer comparison of the alignment results, we inlay two aligned sequences on two con-
centric circles. And then, we connect the points in the sequence Y with their corresponding
points in the sequence X. As shown in Figure 2, the ‘blue bold’ lines connect the labeled
point pairs. The ‘red’ lines denote the connections for aligned unlabeled points. In perfect
alignment, the connections should be along the direction of radius (of the rays emitting from
the center of the concentric circles). Under this visual criterion, our method get the com-
parable and even better performance compared with the semi-supervised algorithm NMA.
Meanwhile, LPA cannot give satisfactory results for this situation. As illustrated in Fig-
ure 2(b), even if there are only 4 labeled pairs, our method still achieves good results. The
more pairs given, the better performance our method achieves. Some results of face image
sequences with various poses are shown in Figure 3.

One advantage of our algorithm is that it could deal with new test data in a direct way as
mentioned in subsection 2.5. In Figure 4, the ‘blue bold’ lines connect the labeled point pairs;
the ‘black dashed’ lines denote the connections for the aligned unlabeled data in training set;
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Figure 2: The results of aligning ‘duck’ and ‘block’ inlayed on two concentric circles.
(a) Examples in two sequences; The rows from top to bottom correspond the results of the
algorithms NMA [10], LPA [16], and our method, respectively. For each column (b), (c) and
(d), the number of the labeled correspondence pairs is 4, 8 and 12, respectively.

(@) (b) (c)

Figure 3: The results of aligning ‘person_01" (138 images) and ‘person_02’ (134 images)
inlayed on two concentric circles. (a) Examples in two sequences; The rows from top to
bottom correspond the results of the algorithms in NMA [10], LPA [16], and our method,
respectively. For each column (b) and (c), the number of the labeled correspondence pairs is
7 and 13, respectively.
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and the ‘red’ lines denote the connections for the aligned new test data. From Figure 4, we
can see that both results of our method for the unlabeled training data and the new test data
are more accurate and stable than the algorithm LPA.

(@ (b)

Figure 4: The results for handling new test data. (a) Examples in two sequences; (b) the
results of method LPA [16]; (c) our results.

Some quantity results on both databases are summarized in Table 2 and Table 3. In the
experiments, we use the first sequence (‘duck’, ‘person_01") as X and other sequences as
Y. For each configuration with different label correspondence pairs, we report the average
pose estimation errors and standard derivations. As shown in these two tables, the baseline
method, which doesn’t consider the relationship between the two manifolds, yields poor per-
formance. The classical LPP method, which can uncover the essential manifold structure in
a single observation space, fails to well handle the scenario of two (or multiple) observation
spaces. The NMA method achieve relative good results, but it cannot process the new test
data since no explicit mapping is learned. Meanwhile, LPA still cannot give satisfactory
results in these situations since the relationship between two embedded manifolds is beyond
affine transformation. Among all methods mentioned above, the proposed method achieves
the lowest errors. And the error rates decreases with the increasing number of the labeled
correspondence pairs.

f labels = 8 f labels = 16
Unlabeled Error \ Test Error Unlabeled Error \ Test Error
Baseline | 36.8974+3.516 | 42.2374+3.770 | 36.694+4.546 | 42.237+3.770
LPP 34.540+5.74 39.855+5.34 34.540+5.74 39.855+5.34
NMA 18.434+11.202 - 12.65+12.766 -
LPA 18.706+9.787 17.625+8.32 17.747+8.998 | 17.43448.707
Ours 15.57+12.079 | 14.533+9.147 | 10.674+10.443 | 9.934+7.834

Method

Table 2: The pose estimation errors (unit: degree) on COIL-20 data set (mean-+tstd-dev)

g labels =7 f labels = 13
Unlabeled Error | Test Error Unlabeled Error | Test Error
Bascline | 62.326+7.516 | 68.945£15400 | 62.079+7.912 | 68.945+15.400
LPP | 37.616+19.496 | 39344516925 | 37.616£19.496 | 39.344+16.925
NMA 9.089+0.411 - 3.366+0.228 -
LPA 32.348+15.277 | 28.5554+13.805 | 32.273+17.245 | 28.549+15.431
Ours 6.933+0.585 14.438+ 4.313 2.630+0.544 9.032£5.065

Method

Table 3: The pose estimation errors (unit: degree) on FACE-10 face data set (mean=+std-dev)
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3.3 Extensions

So far, all experiments performed in this paper are limited to the alignment of two manifolds.
Actually, our method could be extended to multi-manifold alignment according to the for-
mulation in Section 2. In Figure 5, we show an illustrative example result of three-manifold
alignment. Note that, LPA method cannot possess this natural extension.

E %@mmmﬁ@’ 4
%I&ooooowwﬁ@‘ s
S g

(@ (b)

Figure 5: The results of alignment for three datasets. (a) Examples in three sequences; (b)
our alignment results.

4 Concluding Remarks

This paper proposes a novel manifold alignment method via corresponding projections. Dif-
ferent from most previous work, our method learns the explicit corresponding projections
from each observation space to the common embedding space. Benefiting from the explicit
projections, our method could handle new test data directly rather than re-aligning the mani-
folds. Compared with the method based on some assumptions about the structure of dataset
(e.g., alignment using Procrustes analysis), our method could deal with more complex real-
world alignment problem. Besides, our method could be easily extended to align multi-
manifolds. Experimental results on pose datasets of various objects and face images show
that our method gets comparable and even better performance than other related alignment
methods.
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