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In many real-world applications, the same object (e.g., pose, face) may
have different observations (or descriptions) which are highly related but
sometimes look different from each other, such as the videos of the same
scene from different viewpoints, the image sequences of the same action
for different objects, the video and audio segments that come from the
same circumstances, and so on. How to find the correspondence between
the data points of different observation sets is a hot topic. Due to the
fact that different datasets might be located in different high-dimensional
spaces and represented by different features, it is difficult to match the
data in their original observation spaces. From the geometric perspective,
each observation set (e.g., a sequence of face images under various poses)
forms a manifold. Given that these observations are from the same object,
it is reasonable to assume that some common features across different
observation spaces can be represented in an underlying common mani-
fold. The shared low-dimensional embeddings, as better descriptions of
the intrinsic geometry and relationship between different manifolds, are
expected to benefit the subsequent task of datasets alignment.

In this paper, we propose a novel manifold alignment method via cor-
responding projections under the semi-supervised learning setting. In our
algorithm, manifold alignment is formulated as a minimization problem
with proper constraints. Our optimization could be solved in an analytical
manner with closed-form solution. The proposed method is more general
in the following three senses: (1) It learns explicit corresponding map-
pings from different manifolds to the underlying common embeddings,
thus overcome the limitation of most previous methods on out-of-sample
extension [1] ability. (2) It defines the corresponding mappings for differ-
ent datasets at the same time and doesn’t have any assumption on the data
structures, hence could deal with more complex cases than single affine
transformation used in Procrustes analysis. (3) It could be easily extended
to multi-manifolds alignment. In experiments, pose alignment on image
sequences of different objects and face images, are used to verify the effi-
ciency of our algorithm.

The target of our manifold alignment method is to learn the corre-
sponding mappings which could project data points from different datasets
to the intrinsic common embeddings. By doing this, we can compare the
embeddings of the two datasets instead of their original high-dimensional
representations.

More specifically, our algorithm learns mapping matrices Px and Py
for data sets X and Y, respectively. In mapping matrices learning, two
important issues should be taken into consideration: (1) The common
embeddings should be consistent with the given labeled correspondence
pairs; (2) The common embeddings should preserve the local geometric
structures in all original input spaces. We achieve the overall objective by
minimizing the following energy function:

J(Px,Py) = J(Px,Py,Xl ,Yl)+αxJ(Px,X)+αyJ(Py,Y). (1)

There are three terms in this energy function defined above. The first
term J(Px,Py,Xl ,Yl) is called the correspondence preserving term. And
the other two terms, J(Px,X) and J(Py,Y), are the manifold regulariza-
tion terms which are used to preserve the intrinsic manifold structures of
different datasets. The parameters αx and αy are used to balance the three
terms and further influence the relative contribution of local structure pre-
serving in each observation space.

The term of correspondence preserving cost is defined according to
the given correspondence pairs as

J(Px,Py,Xl ,Yl) = ∑
(i, j)∈C

||PT
x xi−PT

y y j||2, (2)

where set C contains all index pairs (i, j) of given correspondences. Ide-
ally, on the underlying common manifold, the embedded labeled pairs
(PT

x xi,PT
y y j) should be as close as possible. Therefore, we formulate the

correspondence preserving term as a sum of squared differences (SSD)
between the embeddings of all labeled correspondence data pairs.

Inspired by LLE [2] method, the two manifold regularization terms
can be properly defined. Ultimately, we formulate the energy function as
the following form:

J(Px,Py)

= ∑
(i, j)∈C

||PT
x xi−PT

y y j||2 +αx
M
∑

i=1
||PT

x xi− ∑
k∈Nx(i)

wx
ikPT

x xk||2

+αy
N
∑

j=1
||PT

y y j− ∑
k∈Ny( j)

wy
jkPT

y yk||2.

(3)

Here, wx
ik is calculated through reconstructing the data point xi using its

k-nearest neighbors xk (k ∈Nx(i)) by minimizing ||xi− ∑
k∈Nx(i)

wx
ikxk||2 s.t.

∑
k∈Nx(i)

wx
ik = 1, and wy

jk could be got in a similar manner.

Let us express the objective function Eq.( 3) using a complete matrix
form, the energy function is rewritten as

J(Px,Py)
= J(Px,Py,Xl ,Yl)+αxJ(Px,X)+αyJ(Py,Y)

= Tr
(

[ PT
x X PT

y Y ]
[

Lx +αxMx −Lxy

−(Lxy)T Ly +αyMy

][
XT Px
YT Py

])
.

(4)

Let P =
[

Px
Py

]
, Z =

[
X

Y

]
and A =

[
Lx +αxMx −Lxy

−(Lxy)T Ly +αyMy

]
.

Consequently, we obtain a concise form as

J(Px,Py) = Tr
(

PT ZAZT P
)

. (5)

Finally, we add the constraints to achieve scaling and translation invari-
ance, and solve the optimization problem of manifold alignment by mini-
mizing

J(Px,Py) s.t.
1

M +N
PT ZZT P = I and PT Ze = 0, (6)

where I is the identity matrix with size of d× d, and e = [1 1 · · · 1]T is
the vector of ones with M +N entries.

Let E = ZAZT and F = ZZT . The solution to the optimization prob-
lem with respect to P is given by the second to (d+1)-th smallest gen-

eralized eigenvectors p with Ep = λFp. Note that p =
[

px
py

]
and d

represents the dimensionality of the common embeddings.
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