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Abstract

In this paper, we present a graph-based image segmentation method (patch-cuts) that
incorporates features and spatial relations obtained from image patches. In the first step,
patch-cuts extracts a set of patches that can assume arbitrary shape and size. Patches
are determined by a combination of intensity quantization and morphological operations
and render the proposed method robust against noise. Upon patch extraction, a set of
intensity, texture and shape features are computed for each patch. These features are in-
tegrated and minimized simultaneously in a tunable energy function. Patch-cuts explores
the benefit of information theory-based measures such as the Kullback-Leibler and the
Jensen-Shannon divergence in its energy terms. In our experiments, we applied patch-
cuts to general images as well as to non-contrast Computed Tomography heart scans.

1 Introduction
Image segmentation is a long-standing problem in computer vision where energy mini-
mization methods have been intensively researched. In particular, graph-based partitioning
methods have proven successful in various applications [3, 6, 10]. Among the most impor-
tant advantages of graph-based segmentation methods are their ability to effectively handle
topology changes, and the fact that their optimization typically results in a global minimum
[7, 12]. More recently, Vu et al. [20] proposed an energy term based on a shape distance
known from level set formulations. The shape prior approach was generalized to handle
multiple, possibly overlapping objects. Slabaugh et al. [18] incorporated an elliptical shape
prior into the graph-cut framework. Xu et al. [22] introduced a graph-cuts based segmenta-
tion method motivated by the active contours approach to object segmentation. The method
is iterative, starts with an initial contour, and uses the graph-cut segmentation framework
proposed by Boykov et al. [3] to find the globally optimal contour in a belt-shaped neigh-
borhood around the contour. Kim et al. [11] were first to use the mutual information in
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an energy minimization algorithm for determining visual correspondences. Their proposed
method uses the maximization of mutual information, a powerful technique for computing
visual correspondences of two images that does not require an a priori model of the rela-
tionship between scene intensities in different views. Recently, graph-cuts have also been
integrated and combined in more elaborated learning-based schemes. Learning, boosting
and statistical learning models in combination with graph-cuts are not the subject of this
paper [4, 19], though patch-cuts might be integrated with some of these methods.

Without doubt, graph-based methods have advanced our understanding of image seg-
mentation. However, current graph-cuts methods do exhibit certain limitations. Both the
basic graph-cuts formulations, as well as many extensions, base their n-link energy terms
solely on absolute pixel intensities or intensity gradients. In the case of shape priors, the
energy term usually contains additive shape energies which require templates [20] or assume
circular or ellipsoidal regions [10, 18]. These priors greatly improve performance in the
case of object classes with similar shapes or in the presence of templates or statistical shape
models. However, the smoothness energy term in most graph-cuts methods is based on pixel
intensities only. It is known that pixel intensities can be locally erroneous due to noise and
other image acquisition problems. Thus, in these cases, noise can adversely affect the perfor-
mance of graph-based segmentation methods. In addition, typical graph-cuts energy terms
contain little flexibility with respect to intensity, shape or texture information.

In this paper, we propose patch-cuts, a graph-based segmentation method that: i) incor-
porates image patches in graph cuts; ii) introduces a tunable energy function that consists of
intensity, shape, texture, and spatial terms; and iii) integrates a robust class of information
theory energy terms. The advantages of patch-cuts are: i) the use of patch descriptors makes
the proposed method robust against noise; i) the tunable energy function is versatile; and iii)
using the Kullback-Leibler [14] and Jensen-Shannon [5] divergence could possibly result in
better segmentations. Patch-cuts combines the strength of patches, information theory mea-
sures and a tunable energy equation in a single framework. Texture, intensity, shape, and
spatial information are simultaneously minimized resulting in a clear, adjustable and robust
problem formulation.

2 Patch-Cuts
Patch-cuts1 incorporates aggregated pixel information, in the form of patches and their prop-
erties, into the formalism of graph-based segmentation. The individual steps of patch-cuts
are outlined in Algo. Patch-Cuts.

Algorithm Patch-Cuts
1. Extract Patches
2. Compute Intensity, Texture and Shape Descriptors
3. Construct a Graph Based on Patches
4. Minimize the Tunable Energy Function

2.1 Patch Extraction
We define a patch as a contiguous image region of at least three pixels, even though patches are typically
much larger. The underlying motivation of patches is that homogeneous regions provide a very natural

1We chose the term patch since in the literature it was used for both rectilinear areas and arbitrarily shaped areas
[21][1].
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approach to segmentation of objects. We motivate our approach from a physiological point of view, as
human perception of objects and scenes, is to a large extent, based on particular spatial configurations
and changes in intensity [23]. The extraction of patches is performed in several steps. First, we smooth
the input image. This is accomplished by convolving the raw 2-D image I(x,y) ∈ R2 with a Gaussian.
Next we perform a quantization of the intensity space of the smoothed input image. Let S(x,y), with
x ∈ (1,2, ...,N), y ∈ (1,2, ...,M) and S(x,y) ∈ [0, 255] be the gray scale channel of the smoothed input
image. Further, let hI be the distribution of all gray levels of S(x,y). Then we map the gray values
within the range of [0,255] to the range [0,N g], where N g is the number of intensity quantization
levels. Figure 1 depicts sample images and their corresponding quantized (patch) images.

Once the quantized image Q(x,y) is obtained, we proceed with the extraction of arbitrarily shaped
non-overlapping patches. Specifically, we split Q(x,y) into K non-overlapping patches P = {pk ∣ k =
1,2, ...,K}. The number of patches is determined by the number of regions R for each individual gray
scale Rg in the range [0,Qg]. More specifically, the number of patches P is ∑

Qg

g=1 ∑
R
r=1 Rg

r , where r
and g represent the indices over all regions for every gray scale, respectively. The number of patches
may vary with image size and the number of quantized gray scales Qg.

In order to smooth patch boundaries and to remove single pixels within patches, we employ mor-
phological operations. Patch-cuts performs a morphological closing operation for each patch. The
Gaussian smoothing and especially the morphological closing operation (which is a common method
for noise removal [15]), makes the patch extraction step robust against the presence of noise. For typi-
cal images, as presented in this paper, patch-cuts extracts between 1,000 and 12,000 patches per image.
The exact number of patches for every image used in this paper can be found in Section 3. In the next
section, we outline the information extracted from every patch pk.

2.2 Patch-Based Information Extraction

This section describes the procedure to extract intensity, texture and shape information from every
patch pk. The intensity and texture information is extracted from pixel set ψ of the kth patch pk in the
input image space S(x,y). Specifically, we create an intensity histogram HI

k for every patch pk. HI is
used in the patch intensity term UI(Lk,Lo) (Section 2.6). Note that we do not use individual pixel
values of the patches, but aggregate descriptors in the form of a histogram. By doing so, we render
patch-cuts robust against noise.

In the subsequent step, texture features are computed for each patch pk. Specifically, we com-
pute for each patch pk a set of Haralick [9] gray level co-occurrence matrix (GLCM) features. Let
Ω j(l,m,λ ,φ) be the co-occurrence matrix with pixel pairs {l,m}. Specifically, we derive four GLCM
features: 1) correlation (ϒ); 2) energy (Γ); 3) contrast (∆); and 4) homogeneity (Ξ). In our experiments,
we set λ = 1 and φ = {0, π

4 ,
π

2 ,
3π

4 }. More details on parameter setting are listed in Section 3. The
GLCM features are incorporated in a patch-based texture feature vector of the form HT = {ϒ,Γ,∆,Ξ}.
If λ consists of more than one element, then the individual texture vectors HT are simply concatenated.
Note that in Section 2.6 we refer to the kth patch texture vector simply as HT

k .

In addition to intensity and texture we add basic shape descriptors to the set of patch descriptors.
This is accomplished by computing a set of simple shape features for each patch pk. Let bx and by be
the Euclidean lengths of the bounding box containing patch pk, and A denote the pixel area of patch k.
Specifically, we extract nine features for each patch pk: 1) solidity (area/convex area); 2) eccentricity;
3) area; 4) perimeter; 5) minor and 6) major axes lengths; 7) compactness (C = A

bxby
); 8) form factor

(F =
4(bx+by)

2

bxby
); and 9) roundness ( 4πA

perimeter2 ). The nine individual features are concatenated into one

patch shape vector HS
k for every patch pk. We use simple shape descriptors as they can be efficiently

computed in real time. In the next section, we outline the graph construction based on patches including
the details of the energy function.
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2.3 Patch-Based Graph Representation
This section describes the construction of a graph based on patches using the methodology of graph-
cuts. We build a weighted undirected graph G = (N,E ). The graph is composed of a set of N nodes
connected through a set of weighted edges E . The weights W are non-negative and represent the
cost W : E →R+. The main difference from the usual graph construction is that we connect patches
instead of pixels. As we are working with binary segmentation problems, we add two terminal nodes
(t-nodes), and one source and one sink node (s, t, respectively) to complete the graph topology. In this
paper, we discuss binary segmentation problems only, however, there can be several foreground objects
in one image provided they belong to the same class (last image in Fig. 1). The t-links determine to
which label a patch can be assigned, and the n-links connect pairs of neighbor patches. The goal is to
assign a label Lk ∈ {0,1} to every patch in a given image. Specifically, UL(Lk) determines the energy
to assign label Lk to the kth patch. The energy function to be minimized consists of UL(Lk) and the
sum of the four subsequent patch-based terms UP(Lk,Lo) (Eq. 3).

E(L ) =
K

∑
k=1

UL(Lk)+
K

∑
k=1

∑
o∈Nk

UP(Lk,Lo). (1)

The second term UP(Lk,Lo) computes the cost of assigning the labels Lk,Lo to the neighboring
patches k and o. Further, Nk is the neighborhood system for patch k (i.e., it refers to the set of patches
adjacent to patch k). The energy function of patch-cuts consists of four additive terms (Eq. 3).

The actual segmentation is obtained by partitioning the graph [3, 12]. Specifically, an s/t cut is
obtained by completely separating all terminal nodes from each other: D(C) = {(s/t) ∈ E ∣s ∈U, t /∈
U}. Here s∈ S is the node subset containing all sources and t ∈ T is the node subset containing all sinks,
with S,T ∈ N. Hence, the cut consists of a subset of edges C ⊂ E . The total cost of the segmentation
is obtained by a simple summation over all weights W as ∣C∣= ∑c∈C wc, with wc representing the cth

edge weight of C and wc ∈ W . Next, we discuss information theory measures that are incorporated
into patch-cuts.

2.4 Energy Terms Based on Information Theory Divergence
Mutual information is a well-known information theory measure that is used to determine the depen-
dence between random variables. The mutual information fulfills two important properties. First, it is
always non-negative, and second, it is zero if and only if the given variables are statistically indepen-
dent. These two properties led to numerous applications where the mutual information was used as a
similarity measure between variables and distributions. As outlined in the introduction, Kim et al. [11]
were the first to use the mutual information in a minimization algorithm. Information measures such
as mutual information do fulfill the submodularity criterion which is of importance for graph-cuts [13].
However, in general, mutual information is very difficult to estimate. In patch-cuts we incorporate the
Kullback-Leibler and Jensen-Shannon divergence [5].

The Kullback-Leibler divergence is a natural distance measure between a true probability distribu-
tion and an arbitrary probability distribution. Note that the Kullback-Leibler measure is not symmetric
and therefore is only a divergence and not a metric. Specifically, the Kullback-Leibler divergence is
defined as

K (U,V ) = ∑
x

U(x)log2
U(x)
V (x)

= ∑x U(x)log2U(x)−∑x U(x)log2V (x).

Alternatively, the Jensen-Shannon divergence is written as

J (U,V ) = Z(π1U(x)+π2V (x))− (π1Z(U(x))+π2Z(V (x))),

with π1 and π2 as weights of the distributions, satisfying π1 +π2 = 1, and

Z(U) =−∑
x

U(x)log2U(x); Z(V ) =−∑
x

V (x)log2V (x)
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denote the Shannon entropies of the probability distributions of U and V . In contrast to the Kullback-
Leibler divergence, the Jensen-Shannon divergence is symmetric, always well defined, and bounded.
In patch-cuts we are working with distributions extracted from patches of varying size. Hence, in
patch-cuts, the probability distributions U and V of Eqns. 2 and 2 are replaced with the respective
patch descriptors outlined in Section 2.2. The Kullback-Leibler and Jensen-Shannon divergence are
used in the energy function (Eq. 3).

2.5 Probability Distributions of the Object and Background Regions
The intensity distribution of the object and background regions are obtained by seed points placed
interactively by a user. The intensity distribution of patch k is given by HI

k introduced in Section 2.2.
Let F and B be patch subsets marked by the user for the respective foreground and background
regions. Then we estimate the intensity probability distribution of the foreground region F and of
the background region B as p(HI ∣F ) and p(HI ∣B), respectively. Subsequently, we use the negative
log-likelihood of the intensity probability distribution as data term UL(Lk)

UL(F ) =−ln p(HI
k ∣F ); UL(B) =−ln p(HI

k ∣B). (2)

Next, we present the details of the four energy terms UP(Lk,Lo) (Eq. 3).

2.6 Tunable Energy Function
Patch-cuts takes advantage of extracting region properties which single pixels cannot provide, such as
intensity, texture, shape and spatial features. Incorporating region properties in the energy function
positions patch-cuts as a highly adjustable graph-cut segmentation algorithm. The four energy terms
incur costs based on independent characteristics of a region. The individual terms can be tuned by
multiplicative weight factors. Hence, the energy terms can be adjusted to specific scenarios, such as
when texture is of more importance. In this case, we would modify the energy function such that
all weight factors are equal to zero except for the texture energy UT (Lk,Lo). In detail, we propose
a tunable patch-based energy function UP(Lk,Lo) which incorporates intensity, texture, shape, and
spatial distance information. We incorporate descriptors (Section 2.2) obtained from all patches in the
energy function. The complete energy function E(L) is defined as

E(L) =
K

∑
k=1

UL(Lk)+

(
wI

K

∑
k=1

∑
o∈Nk

UI(Lk,Lo)+wT

K

∑
k=1

∑
o∈Nk

UT (Lk,Lo) (3)

+ wS

K

∑
k=1

∑
o∈Nk

US(Lk,Lo)

)
∗
(

1−wD

K

∑
k=1

∑
o∈Nk

UD(Lk,Lo)

)
,

where UL(Lk) is the data term (Section 2.5), UI(Lk,Lo) captures the intensity information, US(Lk,Lo)
denotes the shape energy, UT (Lk,Lo) represents the texture energy and UD(Lk,Lo) refers to the spa-
tial energy. wI , wT , wS and wD denote the weights for the intensity, texture, shape and distance energy
terms, respectively. Each weight is bounded by [0,1]. In the following, we spell out all individual terms
of Eq. 3. The intensity energy term UI(Lk,Lo) is given by

UI(Lk,Lo) = exp
(
−

K (HI
k ,H

I
o)

2

2

)
, (4)

where K (HI
k ,H

I
o) is the Kullback-Leibler divergence (Eq. 2) between the intensity histograms HI of

patches k and o, respectively. Next, the texture energy term UT (Lk,Lo) is introduced as

UT (Lk,Lo) = exp
(
− 1

1+J (HT
k ,HT

o )

)
, (5)
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with J (HT
k ,HT

o ) denoting the Jensen-Shannon divergence (Eq. 2) between the texture descriptor HT

of patches k and o, respectively.
The shape energy term US(Lk,Lo) is of the form

US(Lk,Lo) = exp
(
−

J (H S
k ,H S

o )2

2

)
, (6)

where J (HS
k ,H

S
o ) is the Jensen-Shannon divergence between the shape descriptor HS of patches k

and o, respectively.
Arbitrarily sized and shaped patches influence the energy minimization in the graph-cuts frame-

work. Distance priors in a traditional pixel-based graph result in penalty patterns that are identi-
cal across pixel cliques, as the distance between pixels does not change. However, in the case of
patches, the distance between the geometric centers of patches can differ significantly. This observa-
tion holds true within one clique of patches and also across different patch cliques. Patch-cuts utilizes
this finding as it incorporates spatial information UD(Lk,Lo) in the energy function in the form of
Euclidean distances between the geometric centers of patches. Specifically, the energy function is
designed such that the distance term UD(Lk,Lo) is multiplicative with the other energy terms. The(

1−wD∑
K
k=1 ∑o∈Nk

UD(Lk,Lo)

)
factor ensures flexibility for the case of wD = 0. Specifically, the

distance energy term is defined as

UD(Lk,Lo) =
1

1− exp
(
− ∣Cpk−Cpo ∣2

2

) , (7)

where Cpk , Cpo are the centroid coordinates of the kth and oth patch. The use of intensity-based cen-
troids would not affect the energy term, as the patches are designed to be homogeneous. The energy
function is minimized directly with graph-cuts using the max-flow algorithm introduced by Boykov et
al. [2]. In the next section, we present experimental results that illustrate the flexibility of the presented
energy formulation.

3 Experiments
We have conducted all experiments on a 2.67 GHz PC equipped with an Intel Core Duo processor and
4GB RAM. The implementation of patch-cuts was done in MATLAB and C++. The graph optimization
problem was solved using the maxflow algorithm [2]. The user interface is based on code from Gupta
and Ramnath [8]. The runtime scales with image size and the number of patches. Typical processing
times including patch extraction and segmentation are on the order of a few seconds. However, the code
is not optimized for speed, so the given runtime could be improved. We compared the performance of
patch-cuts using an implementation of state-of-the-art algorithms [8, 16, 17].

In our experiments, we determined the number of intensity quantization levels N g for the patch
extraction as follows. Let N g

80 be the number of gray scale values (i.e., the number of bins in hI)
necessary to account for 80% of the pixel counts in S(x,y). Based on our experiments, we found
that N g = 0.15N g

80 is a good approximation for the number of quantization levels. This empirical
determination of N g gives more or fewer quantization levels depending on the image content. For
instance, an image with large homogeneous areas results in very few gray scales, whereas an image
representing complex scenes is quantized into a larger number of gray scales. We opted for an empirical
approach as it delivers the best results in our experiments. Typically, we expect the number of patches
to be on the order of hundreds to thousands. Moreover, HT was computed with λ = 1 and φ =
{0, π

4 ,
π

2 ,
3π

4 }. The results in Figs. 1 and 4 have been obtained using an intensity histogram HI of 8
bins as it results in a robust and compact representation. Figure 1 shows results of patch-cuts for
different images. The weights wI , wT , wS, and wD in Eq. 3 were set equal to one. The images of the
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Figure 1: Sample patch-cuts segmentation results. First column: images with user-supplied
fore- and background seed points; second column: images illustrating the patches; third
column: binary images showing the patch boundaries; and forth column: the segmentation
results using patch-cuts with all weights equal to one (Eq. 3). The number of patches, K is
1,709, 2,929, and 1,220 for the first, second, and third image, respectively. Best if viewed in
color.

first column show the seed points in red and blue for the foreground and background, respectively. The
images of the second column show the extracted patches as described in Section 2.1. The images in
the third column show the boundaries of the patches from the images to the left. Specifically, the third
image in the second panel shows a large number of patches in the water area, which is due to intensity
fluctuation and reflection effects. Patch-cuts extracted a total of 1,709, 2,929, and 1,220 patches from
the images with the fox, iceberg, and penguin, respectively. The images of the fourth column depict the
segmentation results using patch-cuts. Note that the image with the fox has also been used by Rother
et al. [17]. The segmentation result obtained with patch-cuts is of similar quality compared to previous
work ([17]), except that the result of patch-cuts does not include the shadow.

The third panel exhibits the performance of patch-cuts in the case of partial occlusion. The penguin
to the right was correctly segmented using the distance term in the energy function. Note that we did
not place any seeds on the second penguin. The fourth image from the left in Fig. 2 depicts the patch-
cuts segmentation for the same penguin image (Fig. 1) by setting wD=0 and wI=wT =wS=1. This result
illustrates the steerability of the energy function in patch-cuts. Setting the distance term UD(Lk,Lo)=0
in Eqns. 3 and 7 removes the second penguin from the segmentation result. Note that, due to space
considerations, we moved the segmentation result using the penguin from Fig. 1 to Fig. 2.

The first three images in Fig. 2 depict segmentation results using an implementation of GrabCut
[17] and Lazy Snapping [16] by Gupta and Ramnath [8]. GrabCut and Lazy Snapping are parts of the
Interactive Segmentation Tool-Box [8] which also features the iterative combination of GrabCut plus
Lazy Snapping2.

Lazy Snapping uses a watershed algorithm in its implementation which makes it very suitable to
be compared with patch-cuts. We used the toolbox as is, without any modification. Figure 3 depicts
more results using the Interactive Segmentation Tool-Box, using the same input image as in Fig. 1.
This time we employed the interactive combination of GrabCut (dragging an initial bounding box) and
Lazy Snapping for refining. Seed points are shown in red and blue for foreground and background,
respectively. The images depict seed points for the first and second refinement and their respective
segmentations. In this case, patch-cuts clearly performs better, as shown in Fig. 1. In addition, we

2The implementation of Lazy Snapping threw exceptions if too few seed points were provided. Therefore, we
had to provide subtantially more seed points compared to patch-cuts (for the iceberg image (Figs. 1 and 2) the Lazy
Snapping implementation required at least 50% more seeds to execute).
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Figure 2: Comparison of patch-cuts with implementations of GrabCut [17] and Lazy Snap-
ping [16] by Gupta and Ramnath [8] using an identical image from Fig. 1. Note that the
implementation of Lazy Snapping did not execute with the same seed points used by patch-
cuts in Fig. 1 – the implementation requires more seeds. The left-most image shows the new
user-supplied seed points, and the second image displays the segmentation obtained with the
implementation of Lazy Snapping. The third image shows the segmentation result using the
implementation of GrabCut, where the red bounding-box represents the initial user selected
region of interest. The last image shows the segmentation of the penguin (same seed points
as in Fig. 1) using wI=wT =wS=1e and wD = 0. Best if viewed in color.

Figure 3: Segmentation results for the comparison of patch-cuts with implementations of
GrabCut [17] and Lazy Snapping [16] by Gupta and Ramnath [8]. The results show two
iterations using GrabCut and Lazy Snapping. Note that the input image is identical to the
image in Fig. 1. The images from left to right show: 1) initial GrabCut segmentation with the
user selected bounding-box; 2) added seed points for the first iteration using Lazy Snapping;
3) the respective segmentation result; 4) added seed points for a second refinement using
Lazy Snapping, and 5) the respective segmentation result. Best if viewed in color.

have investigated the robustness of patch-cuts with respect to noise. Figure 4 shows different noise
levels of 20%, 30% and 50% for the penguin image. Specifically, noise was introduced in the image
by assigning a randomized color to a certain percentage (20%, 30%, 50%) of all image pixels. The
segementation results in the fourth column show the robustness of patch-cuts.

In order to demonstrate the versatility of patch-cuts we conducted additional experiments using
medical images. Specifically, we worked on the problem of heart segmentation in non-contrast Com-
puted Tomography (CT) data. The segmentation of the heart is of importance for the quantification of
cardiac fat or of calcified arterial lesions and other cardiovascular disease related markers. The car-
diac scans (DICOM format) presented in this paper have been obtained by EBCT (electron beam CT)
imaging with a slice thickness of 3 mm and an axial pixel spacing of 0.508 - 0.586 mm. We extract the
same descriptors as in the case of general images. All medical image segmentation results (Figs. 5 and
6) have been obtained using 12 bins for the intensity histogram HI .

Figure 5 shows the seed points, the patch image, the patch boundaries, and segmentation results
with different energy functions. Patch-cuts extracted 11,274 patches. Specifically, the first segmenta-
tion (fourth image from the left) was obtained with the weights wI , wT , wS equal to one and wD equal
to zero in Eq. 3. The segmentation to the right was obtained with wS equal zero and wI , wT , and wD
equal one. The shape descriptors of the patches do significantly affect the segmentation. The third
segmentation result in the lower panel was computed with wS and wD equal zero, and wI and wT equal
to one. Figure 6 shows another heart segmentation of a different patient. Here, all weights in Eq. 3
were set to one. Patch-cuts decomposed the scan into 11,333 patches. The fourth image shows the
segmentation of the heart.
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Figure 4: Robustness analysis of patch-cuts using the third image from Fig. 1 with the exact
same seed points. The noise level is 20%, 30% and 50% (percentage of randomized image
pixels) compared to the input image (Fig. 1). Each panel shows from the left: 1) the noisy
input image (seeds are identical as in Fig. 1); 2) images illustrating the patches; 3) binary
images showing the patch boundaries; and 4) the segmentation results using patch-cuts with
all weights equal to one (Eq. 3). Best if viewed in color.

Figure 5: Patch-cuts segmentation results for an axial non-contrast cardiac CT scan, near the
aortic root. From the left: 1) seed points; 2) the patch image; 3) the patch boundaries; 4)
segmentation with wI=wT =wS=wD=1 (Eq. 3); 5) result with wS = 0 and wI=wT =wD=1; and
6) result with wS=wD = 0 and wI=wT =1. K=11,274. Best if viewed in color.

4 Conclusion
We present patch-cuts, a novel graph-based image segmentation method. Patch-cuts combines several
concepts. First, the use of patches provides robustness against noise. Second, the use of patches allows
for the incorporation of region-derived feature histograms in the energy function. To that end, patch-
cuts introduces a tunable energy function that comprises intensity, shape, texture, and spatial terms.
The novel energy function positions patch-cuts as a flexible graph-cuts framework. Third, patch-cuts
introduces the Kullback-Leibler and the Jensen-Shannon divergences as a class of information theory
measures in the energy function. The experimental results are encouraging and show that patch-cuts
is robust with respect to noise and can be successfully applied to general images as well as to cardiac
CT scans. The initial results of patch-cuts reveal that, depending on object appearance, certain weight
settings in the tunable energy function perform preferably. A detailed analysis of exactly which weight
settings perform best for specific object classes will be the subject of a forthcoming paper.
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Figure 6: Patch-cuts segmentation results for an axial non-contrast cardiac CT scan, near
the aortic root, for a second patient. From the left: seed points, the patch image, the patch
boundaries, and the segmentation result with all weights in Eq. 3 equal to one. K=11,333.
Best if viewed in color.

References
[1] S. Bagon, O. Boiman, and M. Irani. What is a good image segment? A unified approach to seg-

ment extraction. In Proc. 10th European Conference on Computer Vision, pages 30–44, Marseille,
France, Oct. 12-18 2008.

[2] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow al-
gorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9):1124–1137, Sep. 2004.

[3] Y.Y. Boykov and M.P. Jolly. Interactive graph cuts for optimal boundary and region segmentation
of objects in N-D images. In Proc. 8th IEEE International Conference on Computer Vision,
volume 1, pages 105–112, Vancouver, Canada, Jul. 7-14 2001.

[4] J Corso, A. Yuille, and Z. Tu. Graph-shifts: Natural image labeling by dynamic hierarchical
computing. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, Anchorage, AK, Jun. 24-26 2008.

[5] T.M. Cover and J.A. Thomas. Elements of information theory. John Wiley & Sons, 1991.

[6] G. Funka-Lea, Y. Boykov, C. Florin, M.P.A. Jolly M.P. Jolly, R. Moreau-Gobard, R. Ramaraj,
and D. Rinck. Automatic heart isolation for CT coronary visualization using graph-cuts. In Proc.
3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pages 614–617,
Arlington, VA, Apr. 6-9 2006.

[7] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for binary images.
Journal of the Royal Statistical Society, Series B, 51(2):271–279, 1989.

[8] M. Gupta and K. Ramnath. Interactive segmentation tool-box, http://www.cs.cmu.edu/ mo-
hitg/segmentation.htm, 2008.

[9] R.M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification. IEEE
Transactions on Systems, Man and Cybernetics, 3(6):610–621, 1973.

[10] A. Tannenbaum J. Malcolm, Y. Rathi. Graph cut segmentation with nonlinear shape priors. In
Proc. IEEE International Conference on Image Processing, pages 365–368, San Antonio, TX,
Sep. 16-19 2007.

[11] J. Kim, V. Kolmogorov, and R. Zabih. Visual correspondence using energy minimization and
mutual information. In Proc. 9th International Conference on Computer Vision, page 1033, Nice,
France, Oct. 13-16 2003.

[12] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, 2004.



GERD BRUNNER, ET AL.: PATCH-CUTS; BMVC 2010 11

[13] A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical mod-
els. In Proc. 21st Annual Conference on Uncertainty in Artificial Intelligence, pages 324–333,
Edinburgh, Scotland, Jul. 26-29 2005.

[14] S. Kullback and R. Leibler. On information and sufficiency. Annals of Mathematical Statistics,
22:79–86, 1951.

[15] J. Li and C. Kuo. Automatic target shape recognition via deformable wavelet templates. In Proc.
SPIE: Wavelet Application III, volume 2756, pages 2–13, 1996.

[16] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Lazy snapping. ACM Transactions
on Graphics, 23(3):303–308, Aug. 2004.

[17] C. Rother, V. Kolmogorov, and A. Blake. ”GrabCut”: Interactive foreground extraction using
iterated graph cuts. ACM Transactions on Graphics, 23(3):309–314, Aug. 2004.

[18] G.G. Slabaugh and G. Unal. Graph cuts segmentation using an elliptical shape prior. In Proc.
International Conference on Image Processing, pages 1222–1225, Genoa, Italy, Sep. 11-14 2005.

[19] M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph cuts. In Proc. 10th European
Conference on Computer Vision, pages 582–595, Marseille, France, Oct. 12-18 2008.

[20] Nhat Vu and B.S. Manjunath. Shape prior segmentation of multiple objects with graph cuts.
In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun.
24-26 2008.

[21] Y. Wu, S. Zhu, and X. Liu. Equivalence of Julesz and Gibbs texture ensembles. In Proc. Interna-
tional Conference on Computer Vision, volume 2, pages 1025–1032, Corfu, Greece, Sep. 20-25
1999.

[22] Ning Xu, Narendra Ahuja, and Ravi Bansal. Object segmentation using graph cuts based active
contours. Computer Vision and Image Understanding, 107(3):210–224, 2007.

[23] J. Zacks and B. Tversky. Event structure in perception and conception. Psychological Bulletin,
127(1):3–21, 2001.


