
Generalized Descriptor Compression
for Storage and Matching

Matthew Johnson
http://www.matthewajohnson.org/

Nokia Point and Find
35th Floor
1 Market Plaza
San Francisco, CA

0 4 9

4 0

9 0

1

1

1 1 4 4 4 4 1 1

D

w

1 2

7 8

3 4

5 6 c
o
m

p
re

s
s
io

n

Descriptor

Algorithm

F c

Image

Patch

6 14 23 6611 6 14

0.232 0.179 0.334 0.255

0.134 0.497 0.231 0.138

0.384 0.217 0.145 0.254

0.185 0.069 0.160 0.587

0.249 0.201 0.243 0.307

0.578 0.054 0.303 0.065

0.265 0.252 0.228 0.255

0.383 0.387 0.122 0.108

0.102 0.380 0.128 0.391

0.364 0.236 0.371 0.030

0.122 0.372 0.417 0.090

0.009 0.528 0.157 0.306

0.188 0.322 0.452 0.039

0.281 0.145 0.279 0.295

0.276 0.357 0.013 0.353

0.087 0.244 0.167 0.502

1 2

7 8

3 4

5 6

2 2 2 2

3 1 2 3

1 3 3 2

2 3 3 1

2 2 2 2

1 3 2 3

2 2 2 2

2 1 3 3

3 2 3 1

2 3 1 3

3 2 1 3

3 1 3 2

3 2 1 3

2 2 2 2

3 1 3 2

3 2 3 1

3 3 12

1 3 23

1 + 9 + 0 + 1 = 11

Figure 1: Method Overview In this figure, we can see an overview of the
entire compression and matching method. A descriptor algorithm (in this
case, a GLOH-like scheme) is used to compute a matrix F for two image
patches, in which each row is a normalized histogram which corresponds
to a cell in a mask over the patch. F is then compressed to form the vector
c, where each index represents a row from F . Each element in this vector
is then used to compute per-histogram distances by way of a distance
matrix D. The dot product of this vector and a weight vector w produce
the final distance. F , D and w constitute our proposed canonical form of
a descriptor algorithm.

With the advent of smart phones that incorporate high quality cameras,
mobile computer vision has become an area of increased research. While
many efforts have focused on thin phone clients which interact with a
remote server that uses conventional computer vision techniques to solve
image matching and recognition problems, the current generation of phones
are sufficiently powerful that they can execute computer vision algorithms
locally. In particular, ubiquitous augmented reality on the mobile phone
becomes a feasible undertaking, as the complementary sensors (e.g. GPS,
accelerometer) work along with the camera to provide a rich user experi-
ence. Such applications heavily utilize interest point and descriptor based
algorithms for matching, registration and tracking. However, these algo-
rithms present unique challenges in a mobile computer vision scenario:

Storage Space Memory is in short supply on mobile handsets, and thus
the large memory footprints of descriptors like SIFT, SURF and
GLOH make the storing of databases in memory unfeasible, and
writing to and from the disk on a mobile phone is too slow for the
realtime recognition required for an augmented reality application.

Bandwidth The local image descriptors computed for a reference image
or object number in the thousands and each require a large number
of bits to represent. Given the bandwidth available in a mobile sce-
nario, providing a localized database from a remote server as a user
moves from one geographical area to another becomes untenable.

Computation The most computationally intensive component of any im-
age matching or registration system is descriptor database retrieval.
With thousands of descriptors in the image and thousands more
in the database, millions of distance computations can potentially
take place.

In order to allow mobile computer vision to exploit the substantial
body of computer vision research depending upon existing local image
descriptor algorithms despite the challenges listed above, we propose a
general and efficient method of compression for descriptors, and a tech-
nique by which those descriptors can be compared without requiring de-
compression. An overview of our method can be seen in Figure 1.

We propose a canonical descriptor form uniquely suited for compres-
sion which captures the structure shared by most local image descriptors.

Algorithm Mode Error Rate Bytes Used
ZNCC Reference 52.2 3600
SIFT Reference 7.29 512
NSIFT Canonical 3.27 512
CSIFT Compressed 4.29 48
MU-SURF Reference 30.5 256
NSURF Canonical 23.0 256
CSURF Compressed 22.8 20
GLOH Reference 4.09 1088
NGLOH Canonical 2.47 1088
CGLOH Compressed 2.91 136

Figure 2: Descriptor Retrieval Results The error rate is computed at
95% detection. The last column denotes the number of bytes used to
encode the descriptor in our experiments. The algorithm modes refer to
either a reference implementation of the algorithm, our canonical form of
the algorithm, or the compressed version of our canonical form.

This form consists of three parts, as seen in Figure 1:

1. An M×N matrix, F , in which each row is normalized such that
∑

N
j |F [i, j]|= 1 ∀i ∈M.

2. D is a N×N distance lookup matrix in which D[i, j] = f (2−i,2− j),
where f is a decomposed portion of a distance metric.

3. A weight vector, w, of length M determining how much a particular
row should contribute to the overall distance.

First, the F matrix is computed for an image patch. Each row of this
matrix is compressed using tree coding, resulting in a vector c. Each
index of c encodes an entire row from F using O(N logN) bits, where
N is the length of the original histogram. c vectors are used to index
the distance matrix D to compute a distance between descriptors without
requiring decompression.

The normalized rows of F can be compressed using methods devel-
oped for the lossy compression of probability distributions, such as those
proposed by Gagie in [1]. These algorithms use binary trees to assign
a depth code to each element of the distribution which corresponds to a
negative power of 2. The algorithm we use is based on Huffman Trees and
guarantees that D(P||Q)< 1, where P is the original distribution, Q is the
compressed distribution and D(P||Q) is the Kullback-Leibler divergence.
The results achieved by this compression can be seen in Figure 2.

The distance lookup matrix D contains the pre-computed values of
a decomposed distance metric. For example, in the case of the L2 norm
f (i, j)= (2−i−2− j)2. For two compressed vectors cx and cy, the distance
for rows i ∈M can be computed as ∑ j D

[
cx[i, j],cy[i, j]

]
for columns j ∈

N. One result of normalizing each row of F separately and computing the
distance between each row directly is that any weighting of cells in the
descriptor is lost. Our canonical form recaptures this effect by way of the
weighting vector w. The values of w weight the row distances and as such
recapture the effect of the cell-weighting used in many descriptors.

The conversion to canonical form, which computes the distance be-
tween rows in F separately using D before weighting the result with w
results in an improvement in performance for all descriptor algorithms, as
can be seen in Figure 2. While compression of this canonical form results
in a slight loss in accuracy, the compressed version still performs better
than the reference implementation while requiring far less storage space
and having a significantly reduced computational cost at runtime due to
the use of a lookup matrix in distance computations.

[1] T Gagie. Compressing probability distributions. Information Pro-
cessing Letters, 97(4):133–137, February 2006.

