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Inference from visual scenes that contain highly specular objects is a par-
ticularly challenging computational problem. Most recent contributions
to such problems have exploited the specular flow –the vector field that
is induced on the image plane as a result of a relative motion between
the camera, object, or environment– to facilitate diverse tasks such as
shape inference, 3D pose estimation and detection of rigid objects (see
references in the paper).Unfortunately, however, reliably estimation of
specular flow from image sequences is an open question that was never
addressed formally before, except for using (unsuccessfully) standard op-
tical flow technique [1].

In this paper we first argue that existing optical flow algorithms are
incapable of reliable specular flow estimation due to their typical regu-
larization criteria that conflict the unique and singular structure of spec-
ular flows. More precisely, we observe that all flavors of the smoothness
term disagree with the fact that the specular flow magnitude can become
very large or even unbounded in certain regions. Furthermore, they do
not address well the orientation singularities, which are related to surface
curvature instead of the image gradient (see Fig. 1).

To validate our predication qualitatively and not only quantitatively,
one should use ground truth data with which different algorithms can be
compared. Unfortunately, the standard Middlebury optical flow dataset [2]
is missing several important cases like specular and transparent scenes and
it cannot be used in this task. To overcome this gap, we present technical
steps for establishing a full scale benchmark database contains a real im-
age sequences with their corresponding specular flow ground truth. While
a full fledge benchmark site is currently under construction, these prelim-
inary data sets are already available publicly [3] and we hope they would
promote much research on specular flow estimation.
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Figure 1: A close up of three regions of interest of an estimated specu-
lar flow. All panels show ground truth on the left, result of our proposed
algorithm in the center. The results by existing state-of-the-art algorithm-
son the right exhibit typical qualitative failures: large regions where the
orientation error is significant (a), smooth transition instead a fixed ori-
entation jump at the singularity (b), and inference of smaller magnitude
instead of large one around parabolic singularities (c).

Specular flow estimation
To extend existing methods to handle specular flow we suggest to gener-
alize the optical flow variational framework such that the advantages of
existing regularizations is kept in most regions, while more appropriate
regularization is employed where the flow violates the smoothness as-
sumption. Assuming one can tell (exactly or approximately) the division
of the image plane into regions of different properties, an optical flow
model that switches (spatially) between the appropriate terms will have
the following general form:

E(u,v) =
∫

Ω ∑i ηi(x,y)Ei(dI,u,v)dxdy s.t ηi(x,y)≥ 0∧∑i ηi(x,y) = 1
(1)

where u,v is the sought-after flow, dI stands for the image derivatives,
Ei is a (data or regularization) term appropriate for regions of type i, and
ηi(x,y) is a spatial confidence function that describes the degree of com-
patibility of each point to this type of region. The normalization constraint
∑i ηi(x,y) = 1 reflects a prior that region types are mutually exclusive (in
the probabilistic sense), but if necessary it can be removed. Note that
unlike in previous approaches, this new framework allows to reduce com-
pletely the influence of the data term in certain regions.
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Figure 2: Comparison of the performance of state-of-the-art optical flow
algorithm (middle) to our algorithm (bottom) on real specular flow se-
quence (top). The flows are represented by their magnitude and orienta-
tion components (see the paper for details).

In this work we will use this capacity along the –parabolic singularities–
the locus of specular flow points that exhibit both magnitude singularity
and orientation discontinuity of 180◦. The unique flow structure along the
parabolic singularities can be abstracted by the two conditions

(u2 + v2−χ2)2 = 0
I(x,y, t) = I(x+u,y+ v, t +1) = I(x−u,y− v, t +1) (2)

Hence, combined with a robust penalty function we define the “parabolic
term” regularizer as follows:

Ep
4
= ψ

(
(I(x+u,y+ v, t +1)− I(x−u,y− v, t +1))2)+ψ((u2 + v2−χ

2)2) (3)

where χ is the maximum practical magnitude allowed in the estimated
specular flow. One “disadvantage” of Ep is its aggressive encouragement
of large-magnitude flow. Hence, by applying it to points too distant from
the parabolic singularity (due to an inaccurate confidence function) we
are still at risk of obtaining large scale distortions. To solve this, we also
define a weaker version of the parabolic term that incorporates the orien-
tation structure only:

En
4
= ψ

(
(I(x+u,y+ v, t +1)− I(x−u,y− v, t +1))2) . (4)

This “neighborhood” term is constructive for a finite-size strip around
the parabolic singularity since in practical terms it can be employed for
all pixels whose distance from the singularity is smaller than their optical
flow magnitude. This term has an added advantage – it is significantly
easier to approximate its corresponding confidence function using stan-
dard computational tools.

Using these two terms, and following our suggested computational
framework (Eq. 1) we now suggest to obtain more reliable specular flow
estimation by minimizing the following energy functional

E(u,v) =
∫

(η0(x,y)Ed +η1(x,y)Es +η2(x,y)En +η3(x,y)Ep)dxdy , (5)

where Ed abbreviates Edata, Es abbreviates Esmooth, η2(x,y) and η3(x,y)
are the spatial functions describing the confidence that point (x,y) is near
or at a parabolic singularity, respectively.

The algorithmic framework suggested in this paper is designed to
generalize optical flow algorithms in order to extend their computational
domain to include non traditional behaviors such as specular singulari-
ties. In this sense, one could plug in to our framework any variational
optical flow algorithm (i.e., by setting the proper terms in Eq. 5) to end
up with a new version of that algorithm that handles specular flows better.
As a proof of concept, we implemented the proposed algorithm by using
relative simple data and smoothness terms and show that even with this
particular choice the obtained algorithm can estimate specular flow sig-
nificantly better than state-of-the-art optical flow algorithms (see Fig. 2).
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