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Kernel methods yield state-of-the-art performance in certain applica-
tions such as image classification and object detection. For these appli-
cations, the gold-standard kernels are the so called generalized radial-
basis function (RBF) kernels. A typical example of one such kernel is the
exponential-χ2 kernel
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These kernels combine the benefits of two other important classes of ker-
nels: the homogeneous additive kernels (e.g. the χ2 kernel) and the RBF
kernels (e.g. the exponential kernel).

However, large scale problems require machine learning techniques
of at most linear complexity and these are usually limited to linear kernels.
Recently, Maji and Berg [2] and Vedaldi and Zisserman [4] proposed ex-
plicit feature maps to approximate the additive kernels (intersection, χ2,
etc.) by linear ones, thus enabling the use of fast machine learning tech-
nique in a non-linear context. An analogous technique was proposed by
Rahimi and Recht [3] for the translation invariant RBF kernels. In this
paper, we complete the construction and combine the two techniques to
obtain explicit feature maps for the generalized RBF kernels.

The generalized RBF kernels extend the RBF kernels to use a metric
not necessarily Euclidean. Recall that, for any Positive Definite kernel
K(x,y), the equation

D2(x,y) = K(x,x)+K(y,y)−2K(x,y) (1)

defines a corresponding squared metric. Given an RBF kernel KRB(x,y) =
k(‖x−y‖2

2), one can then obtain a corresponding generalized variant

KRBD2(x,y) = k(D2(x,y)). (2)

Constructing an approximate feature map for (2) involves two steps. The
first step involves the construction of the feature map Ψ̂(x) for the kernel
(as in 1) by using the method of [4] to approximate distance measure D2.
The second step involves the construction of the feature map for KRBD2

using random Fourier features [3]. The complete procedure of computing
the approximate feature vector Ψ̂RBχ2(x) from the given feature vector x
for the exp-χ2 kernel is given in Figure 1.

A limitation of the random Fourier features is the relatively large
number of projections required to obtain good accuracy. The simplest
way to select useful random Fourier features is to use an appropriate reg-
ularizer for SVM training. In this paper, we considered two formulations
based on l1 regularization to select useful random Fourier features. Also,
there exists efficient implementations as a part of LIBLINEAR [1] for
these formulations. We refer to these l1 regularization based formulations
as SVMsparse and LRsparse, and to the standard SVM as SVMdense.

We evaluate the proposed feature maps as part of the construction
of an object detector on the PASCAL VOC 2007 data. We work on top
of the state-of-the-art multiple-stage detector proposed in [5] using only
PHOG features. The multiple stages are a cascade of a linear, χ2 and
exp-χ2 detector. We use our feature map for exp-χ2 to speed-up the third
stage of the cascade (exp-χ2), which is also noted to be the bottleneck
in [5]. We show that feature maps can improve on fast additive kernels,
and investigate the trade-offs in complexity and accuracy. Figure 2 shows
the comparison of performance and testing time using exponential and
additive kernels for both exact and approximate versions. It is found that
both the dense and sparse approximations perform nearly as well as the
exact exp-χ2 kernel. The testing time of the approximate sparse SVM is
two to three times faster than the dense SVM.

Compute a 2m dimensional approximate finite feature map for the
exponential-χ2 kernel K(x,y) = exp(− 1

2σ 2 χ2(x,y)).

Preprocessing: Draw m random vectors ωωω sampled from a (2n+1)d
isotropic Gaussian of variance 1/σ2.

Given: A vector x ∈ Rd .
Compute: The approximate feature map Ψ̂RBχ2(x)

1: Construct the 2n+1 dimensional vector Ψ̂(x) by setting for
j = 0, . . . ,2n
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2: Construct the 2m dimensional vector Ψ̂RBχ2(x) by setting for

j = 1, . . . ,2m

[Ψ̂RBχ2(x)] j =
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(4)

Figure 1: Feature map for the exponential-χ2 kernel. The resulting vector is
2m dimensional. Here n controls the χ2 approximation, and is typically chosen as
a small number, e.g. n = 1 (and in this case L ≈ 0.8, see [4] for details on how
to choose this parameter). The algorithm requires only two modifications for any
other RBF-D2 kernel. First, (3) should be adjusted so as to match the metric D2

(closed forms are given in [4]). Second, the projections ωωω j should be sampled
from the density κRB(ωωω) corresponding to the desired RBF profile.
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Figure 2: Comparison of performance for exponential and additive kernels along
with their approximations for twenty classes of the VOC 2007 challenge.
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