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Abstract

Variational level set methods are formulated as energy minimisation problems, which
are often solved by gradient-based optimisation methods, such as gradient descent. Un-
fortunately, the gradient obtained by applying the calculus of variations is not suitable,
because it is only an element of the function space L?> making it prone to lead into wrong
local minima. Consequently, some regularisation strategy - be it the restriction to signed
distance functions or the choice of smooth function spaces - is necessary. In this paper
we propose diffusion-based regularisation strategies and compare them to the recently
proposed ones of Charpiat ef al. and Sundaramoorthi er al. From this comparison we
derive two general regularisation paradigms at the level of update equations and show
that the diffusion-based paradigm enjoys both theoretical and practical advantages, such
as an improved convergence rate, while being of the same computational complexity as
the other paradigm.

1 Introduction

Many variational level set methods for image segmentation can be summarized in the fol-
lowing recipe. First, design an energy E which gets minimized by the optimal configuration
of the embedding function ¢:

minE(¢). ()

oV

Second, apply the calculus of variations to obtain VE(¢):

GE@ )| = [ VE@)-ydx=(VE@). v =0 @
Third, solve (1) via gradient descent, which leads to the continuous evolution equation
di¢ =—VE(9) (3)
and the discrete update equation
9" = 9" —TVE(9"). “)
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As already indicated in (2), the recipe described above implicitly assumes that V = L2,
Therefore it is mathematically correct to refer to VE as the L>-gradient and not simply the
gradient. Unfortunately, the L?-gradient is, to put it simply, too local and therefore prone to
lead into an undesired local minimum (see [6] or [20] for further details). Thus regularisation
strategies are necessary to avoid these undesired local minima and one can classify them as
either implicit or explicit.

1.1 Implicit Regularisation (Choosing a Smooth Subspace of V)

The oldest example for implicit regularisation is most probably the restriction of ¢ to the
space of signed distance functions. However, the term "space" is not correctly used here,
because signed distance functions do not form a function space in the mathematical sense as
the sum of two signed distance functions is not a signed distance function for instance. Even
if this would be the case, the updates VE (") are also no signed distance functions and thus
periodical re-initialisation is necessary (see [12] for instance).

Another implicit regularisation strategy can be seen in the usage of parametrisations
leading to function spaces spanned by smooth basis functions such as radial basis functions,
which was done by Ho et al. [9], Morse et al. [13], Slabaugh et al. [19], and Benoit et al.
[14]. Approaches using splines, such as the MetaMorphs framework of Huang ef al. [10] or
the variational B-spline framework of Bernard ef al. [3] are also related to this strategy.

Recently, Bresson et al. employed the space of functions of bounded variation BV in [4].
However, their approach is restricted to a special functional E. Another, more general, choice
was suggested by Charpiat et al. [6] as well as Sundaramoorthi et al. [20], who restricted V
to the space of infinitely many times continuously differentiable functions C* or spaces of
weakly differentiable functions, such as the Sobolev space H'. Two years later, C was also
used by Bar and Sapiro in [2], but based on a slightly different mathematical justification.
We will see in Sec. 4 that, if we use a gradient descent to minimize E, the restriction to the
function spaces suggested in [2, 6, 20] results in an update equation of the form

o't =9¢'— 1% [VE(¢")], S

where Z ] is a certain regularisation operator.

It deserves credit, that the drawbacks of the L2-gradient as well as sophisticated implicit
regularisation strategies have been discovered much earlier in the registration community
(e.g. Trouvé in 1998 [21]) than in the segmentation community.

1.2 Explicit Regularisation (Regularising the Energy F)

In contrast to implicit regularisation strategies, explicit strategies aim at regularising the
energy E directly:

min E(¢) +AR(¢), (6)

ocL?

where R is an additional regularisation term, with A > 0 controlling its influence. The first
approach in this context is the one of Li ez al. [11], who suggested the regulariser

R9)= [ (IV9F~1)" as ™)
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enforcing locally the shape of a signed distance function. This signed distance regularisation
results in an evolution equation that includes

VR(¢) = —div ((1 - vl¢|) V¢) . (8)

Unfortunately, the non-linearity of (8) does not allow the corresponding finite difference
approximation to be written as a matrix vector multiplication and thus the applicability of
efficient numerical schemes, such as semi-implicit time discretisations. The same holds
true for a curvature-based regularisation, such as adding VR(¢) = —div (V¢ /|V9|) to the
evolution equation, because the curvature operator is also non-linear.

1.3 Regularisation Strategies based on Diffusion

Similar to [11] we focus on explicit regularisation strategies. However, we focus on regu-
larisers of the form

R(9) = /Q (V)T gV dx, ©)

where the weight function g solely depends on the image function / and not on ¢ causing the
resulting gradient

VR(9) = —div (sV¢) (10)

to be linear with respect to ¢. Thanks to the linearity of (10) the resulting update equation
can be written in the form

Ot =29 —TVE(9")], (11)

which will be shown in Sec. 3. It is obvious that, if the same regulariser is used, (5) and
(11) are of the same computational complexity, but we will see that (11) has some desirable
advantages which cannot be achieved by (5).

We want to emphasize at this point that a diffusion regularization has already been used
in the well-known Mumford-Shah model [15] and its favourable theoretical as well as nu-
merical properties concerning this model have also been proven, see [18] for instance. The
focus of this paper is to introduce it from a general point of view and to relate it to the implicit
regularization strategies of Charpiat et al. [6] and Sundaramoorthi et al. [20].

2  Why Diffusion Regularisation

Introducing a diffusion regularisation has theoretical as well as practical implications, which
both need to be discussed.

2.1 Theoretical Considerations

A necessary theoretical assumption is the ellipticity condition
8§2¢; (12)
for some ¢ > 0. Provided (12) holds, the resulting evolution equation

39 = —VE(9) + Adiv (gV9) (13)
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(a) (b)
Figure 1: The smeared-out Dirac distribution 8, divides the image domain into an diffusion-
dominated area (grey stripes) and a competitive area (grey). When ¢ becomes flatter the
competitive area and thus the support of VE becomes greater.

is a parabolic partial differential equation modelling a diffusion process. A parabolic equa-
tion has the nice property that information is spread with infinite speed and we can hope that
this results in an improved convergence rate in contrast to non-parabolic evolution equations,
such as (3). However, it might be a good idea, to limit the amount of information, which is
spread across edges. Thus we will investigate not only the isotropic case g = 1, but also

1
g(x) = W: (14)

which is clearly anisotropic. Another consequence of (12) is that adding the proposed reg-
ulariser (9) makes the energy to be minimized more and more convex as A in (13) tends to
infinity. Thus more and more local minima of E to disappear. However, by choosing moder-
ate values for A, which means A € [0.01,0.2], we will only discard very local and undesired
minima.

2.2 Practical Considerations

Introducing a diffusion regularisation we cannot expect ¢ to be a signed distance function,
even if it is initialized as such. Of course, this is also true for many other regularisation
strategies and since only the zero level set of ¢ is interesting for level set segmentation, one
is tempted not to worry too much about the shape of ¢. On the contrary, according to Gomes
and Faugeras [8], an accurate approximation of derivatives of ¢ by finite differences is only
guaranteed, if ¢ is not too steep. Also Chan and Vese [5] as well as Li er al. [11] state
that it is necessary to prevent ¢ from getting too steep or flat. As a consequence we want
to make some effort to explain why ¢ cannot get too steep or flat in the case of diffusion
regularisation. Therefore, we consider a typical energy, such as

0)= [ H(-0)1 -+ H(O)I - ) dx+y [ 8(9)s(D)|Vol dx, (15

which has been proposed by Chan and Vese in [5]. We further assume that g(I) = 1 (w.l.o.g.),
which leads to the diffusion equation

919 = 8(0) |1~ — (1 - + 20 (7] + 2o, 16

where we assume Neumann boundary conditions at the borders of the image domain.
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(a) initialisation (b) 1D cut of the stationary
state

Figure 2: The steepness of ¢ clearly depends on the choice of A4, but the position of the zero
level set remains the same.

At first, we note that the numerical approximation of VE can be written in the form

VE(¢(x)) = 3¢ (¢ (x))F (x, 9 (x),1(x)), (17)
where
_ )0, o] > &,
55(¢)‘{;£<1+cos<’?>>, 9] <e, 1%

is a smeared-out approximation of the Dirac delta distribution (see [16, Chapter 1] for further
details) controlling the support of VE(¢) and dividing the image domain into two areas:

o In the diffusion dominated area (indicated by grey stripes in Fig. 1), which corresponds
to O:(¢) = 0, the evolution is completely governed by A¢. As a consequence and
thanks to the Neumann boundary conditions we will observe that in the diffusion-
dominated area

|¢| — € ast — oo. (19)

e In the competitive area (indicated by grey colour in Fig. 1), which corresponds to
0:(¢) # 0, the evolution is governed by the competition between A¢ and VE(¢).
If ¢ becomes flatter, the competitive area and thus the support of VE increases as
visualized in Fig. 1. At some point the increasing contribution of VE exceeds the one
of A¢ causing ¢ to become steeper again. Conversely, if ¢ becomes flatter, the support
and thus the influence of VE becomes smaller and at some point A¢ dominates causing
¢ to become flatter again. As a consequence, ¢ can neither become too flat, nor too
steep in the competitive area. Indeed, by adjusting the regularisation parameter A we
can even control how steep or flat ¢ becomes.

We conclude with a first numerical experiment demonstrating that the above made con-
siderations can also be observed in practise. Thus we aim at segmenting the square in Fig.
2(a) and solve (16) by a semi-implicit scheme (c.f. Sec. 3). Initialized as a basin of depth
4, ¢ evolves smoothly towards a stationary configuration. We can observe in Fig. 2(b) that
(19) holds true (¢ = 1.5) and that the steepness of ¢ in the competitive area depends on A.

3 Efficient Numerical Schemes

The direct translation of the gradient descent procedure for solving (6) results in the forward
Euler scheme
0T =¢' —TVE(¢") + tAdiv (qu)’) ) (20)
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where ¢’ denotes the approximation of ¢ at time ¢. Provided powerful alternatives are avail-
able, which is the case here, one should not use a forward Euler scheme, because, even in
the simplest case g(I) = 1, it suffers from the severe CFL-condition 7 < 1/4 (in two spatial
dimensions). Thus we now derive more efficient numerical schemes for solving (13).
3.1 Semi-Implicit Discretisation
In order to avoid severe time step constraints we can use the semi-implicit scheme

0"t =¢' —TVE(¢") + tAdiv (qu)’”) , 21
which leads to the update equation

T = (1 1Adiv(gV)) " (¢ — TVE(9")). 22)

As the finite difference approximation of 7 — tAdiv (gV) is linear one can use efficient nu-
merical techniques for the inversion, which can be found in the book of Saad [17] or in [22]
by Weickert et al.

3.2 Duhamel’s Principle

If g = 1, there is another possibility for solving (13) based on Duhamel’s principle [7, Chap-
ter 2]. The main idea is to split an initial value problem of the form

(23)

du(x,t) = f(x,7) + AAu(x,t),
u(x,0) = g(x),

into two problems. One with the correct initial condition, but without source-term

i {atui(x,t) = AAui(x,1),

24
ui(,0) = g(x), @4

and one including the source term, but with homogeneous initial condition

Orug(x,1) = AAus(x,t) + f(x,1),
* us(x,0) =0.

(25)
The superposition u = u; + u, eventually solves the whole problem, because

du(x,t) = [Qu; + dug) (x,1) = [AAu; + AAug + fl(x,7) = f(x,2) + AAu(x,1) (26)
and

u(x,0) = ui(x,0) + us(x,0) = g(x) + 0 = g(x). 27
Denoting the fundamental solution by
2

(477:/'Lt)_% exp (7%) , >0,
0, t <0,

®(x,1) = (28)
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where d denotes the dimension, the solution to (i) can be written as
ui(x,1) = (@g)(x.1), (29)
if ¢ > 0. The solution to (s) can be obtained using Duhamel’s principle:
us(x,1) = /()I/Qd)(x—y,t —35)f(y,s) dyds. (30)
Approximating the integral with respect to s we obtain
us(x,t) ~t- ./QCIJ(x—y,t —0)f(»0)dy=1-(Dx*f)(x,0), 31

if £ > 0. Thus we can construct an iterative scheme for (13) as follows. At we take ¢’ as the
initial condition g and —VE(¢") is the corresponding source term f and compute ¢’ as

(p’”:sz*W—T-Gg\/ﬁ*VE(‘Pt) (32)
=G, (0" —T-VE($")), (33)

where
G, e lx) = @ (x,zx/ﬁ) (34)

is nothing else than a Gaussian kernel with standard deviation 2v/TA.

4 Regularisation Paradigms

Now we want to relate the schemes derived in the last section with other ones from different
regularisation strategies. In order to simplify the following considerations, we define three
regularisation operators, which can be considered as low-pass filters or smoothing operators:
the Gaussian operator

Y(o)lv]l=Go*v, (35)
the isotropic Sobolev operator
S(@)y] =1 —ad) "y, (36)
and the anisotropic Sobolev operator
o () [y] = (I - adiv (gV)) ' y. (37)
This allows to rewrite the derived schemes as follows:

4(2y/710)[¢" —Tt-VE(¢")], Duhamel’s principle for g =1,
9T =< .S (1A)[¢" — T-VE(¢")], semi-implicit scheme for g = 1, (38)
o (TA)[¢" —1-VE(¢")], semi-implicit scheme for general g.

If we forget about the model we want to solve and consider these schemes as plain update
equations, we might wonder, whether it would be possible to regularize only the update
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applied to VE(¢") applied to ¢' — TVE(¢")
Y(o) [6] isotropic diffusion (¢ = 2V A1)
(o) [6] and [20] isotropic diffusion (&t = A7)

/(o) Weighted Sobolev Space  anisotropic diffusion (ot = A7)

Table 1: Overview over all possible update rules and the resulting models.

VE(¢"). Indeed, it is and this leads us to the implicit regularisation strategies suggested by
Charpiat et al. [6] and Sundaramoorthi ef al. [20]:

g {9 T OVEW@), V=Casinlo), 9
| ¢'—1- () [VE(¢")], V =H"asin[6]and [20].
Obviously, one combination is missing here: it is
9T =¢"—1- /() [VE(9")], V=H (40)

which corresponds to an implicit regularisation strategy based on the Sobolev space H', but
equipped with a different scalar product:

(. ¥)i = (9, ¥) 2 +a(Ve,gVy)2. 41)

It is interesting that (40) has not been used for variational level set segmentation so far.

In summary, we can observe two regularisation paradigms here. We can apply a regu-
larisation operator either to the whole right-hand side (rhs) ¢’ — 7- VE(¢"), or only to the
update VE(¢'). The computational complexity is exactly the same in both cases. Of course,
a convolution is faster to compute than the inversion of an equation system, but we can also
speed up the application of . (o), if we compute its impulse response . ()0 and use it
as a filter mask. This is, of course, not possible for /(o). However, also <7 () has its
raison d’étere as we will see in the next section. We conclude by referring to the overview
presented in Tab. 1.

S Discussion of Numerical Experiments

In order to compare the two regularisation paradigms derived in the last section, we seg-
mented three images from [1] (see Fig. 3) based on the energy defined in (15). We used
7 = 10 and the following parameter settings regarding the energy to be minimised: A = 0.1
in Eq. (13) as well as Y= 0.2 (plane), ¥ = 0.5 (moth), ¥y = 0.1 (leaf) in Eqn. (15). In order to
keep the application of the regularisation operators corresponding to the implicit strategies
of [2, 6, 20] comparable we used ¢ = 2v/TA =2 and o = A = 1 in Eqn. (39) and Eqn.
(40).

A general observation is that it is always advisable to apply a regularisation operator
to the whole right-hand side and not only to the update, which corresponds to a diffusion
regularisation. In all three cases this results in an increased convergence rate (c.f. Fig. 3(c),
3(f), and 3(i)) and a smoother embedding function. Moreover, if we compare the results in
Fig. 4, the regularisation of the whole right hand side seems to be less prone to get stuck in
a local minimum of E.
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R N

(a) initialisation (b) ground truth (c) convergence rates

(d) initialisation (e) ground truth (f) convergence rates

(g) initialisation (h) ground truth (i) convergence rates

Figure 3: The diffusion-based regularisation paradigm shows an increased convergence rate.

Comparing the three regularisation operators with each other, it turns out that the Sobolev
operator .¥ (o) enjoys the best compromise between runtime and quality: on the one hand,
it can be implemented via a convolution with its impulse response . (¢t) 8, which allows for
a short runtime, and on the other hand, the quality of the results is visually satisfying.
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