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Manifold learning algorithms have received much focus in the com-
puter vision and pattern recognition communities over the past decade.
Many problems in these fields require a low dimensional representation
to be found as working in higher dimensions can often be problematic. Di-
mensionality reduction and manifold learning techniques have been used
to reveal patterns in such high-dimensional data [6]. As an example, con-
sider a data set consisting of a sequence of images showing a rotating
3-dimensional object. Across the dataset the object rotates around one of
its axes. If each of these images were to be thought of as a point in high-
dimensional space (the dimensionality being equal to the number of pixels
in the image) then they would lie on a simple circular manifold that is pa-
rameterized by the degree of rotation of the object. This means that each
image can be discriminated using only 1-dimension - the degree of rota-
tion - as opposed to, in the case of a 128×128px image, 16,384 dimen-
sions. This reduction of dimensionality overcomes many computational
and mathematical problems associated with high-dimensional learning.

Many techniques have been proposed to perform manifold learning,
ranging from simple linear transforms, for example Principal Components
Analysis (PCA) [3], to more advanced non-linear learning algorithms like
ISOMAP [5] and Local Tangent Space Alignment (LTSA) [7]. We present
a manfiold learning algorithm, Iterative Hyperplane Merging, that can be
used to find non-linear manifolds in high-dimensional data. Iterative Hy-
perplane Merging (IHM) can be intuitively thought of as a form of local
PCA where PCA is applied at a local scale to produce low-dimensional
local hyperplanes. These local hyperplanes are then globally aligned to
produce the final low-dimensional embedding. A clustering algorithm is
employed to create the partitions needed to form the local hyperplanes,
in this paper we use either a Gaussian Mixture Modelling scheme [2] or
a constrained k-means clustering algorithm [1] to form the partitions. A
Minimum Spanning Tree (MST) of the inter-hyperplane distance graph is
used as the basis for forming the global alignment of the hyperplanes as
it provides a skeleton of the manifold along which we can walk. To ob-
tain a faithful global embedding we perform a pre-order traversal on this
Minimum Spanning Tree. When walking from one node in the MST to
another we merge the hyperplanes gradually building a global embedding
of the data. The merging function is defined as

f (Πa→Πb) = AUbUT
b +(Π̄b− (Π̄bUbUT

b )) (1)

and is a simple projection from one hyperplane, Πa, to another, Πb. Here
A is the matrix of samples in all the hyperplanes already visited and is
increased and updated after each call to the above merging function. If
we are re-visiting a hyperplane in the traversal then we need to adapt the
above merging function to improve the robustness of the embedding. We
do this by applying Procrustes analysis [4] to translate, scale and rotate
the image of the hyperplane in the global embedding to its original rep-
resentation. This backtracking function is similar to the above merging
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Figure 1: Graph of results for the trustworthiness (left) and continuity
(right) of different algorithms when trying to unroll the Swiss Roll dataset
with 2000 samples.. The neighborhoods for Isomap and LTSA were av-
eraged over the range k = [2,32]. For IHM we use GMM to find optimal
cluster sizes with an initial cluster size estimate of 32.
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Figure 2: 3D Swiss Roll data set (left) and the IHM embedding using
Gaussian Mixture Modelling for the clustering stage (right).

function but with an extra constraint:

f (Πa′ →Πa) = b(AUaUT
a +(Π̄a− (Π̄aUaUT

a )))T+v (2)

where b is the isomorphic scale value, T is the rotation matrix and v is
the translation vector. Once the traversal along the MST has finished we
can find the low-dimensional embedding by performing Principal Com-
ponents Analysis on the obtained global embedding.

We have tested our algorithm on both toy data and real world im-
age data. For the toy data we used the benchmark Swiss Roll data set
and compared our results against three widely used algorithms - Prin-
cipal Components Analysis [3], ISOMAP [5] and Local Tangent Space
Alignment [7]. Our results show that over a range of local neighbor-
hood sizes Iterative Hyperplane Merging is more stable than any of the
other algorithms (Figure 1). It is also able to find the low-dimensional
embedding without normalization or any global distortion (Figure 2). In
this paper we also show how Iterative Hyperplane Merging can learn a
high-dimensional image manifold by applying our algorithm to the Frey
Faces dataset. Our results show that there is structure in the data with
expressions distributed across the manifold and at a local scale images
in the local input neighborhood match those in the local output neighbor-
hood. When compared with other results using this dataset our embedding
shows more meaningful structure. This suggests that Iterative Hyperplane
Merging could be a useful tool for discovering structure and patterns in
many real world image datasets.
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