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Figure 1: Constructing the semantic visual vocabulary.

In this paper we propose a novel approach to introducing semantic rela-
tions into the bag-of-words framework. We use the latent semantic mod-
els, such as LSA and pLSA, in order to define semantically-rich features
and embed the visual features into a semantic space. The semantic fea-
tures used in LSA technique are derived from the low-rank approxima-
tion of word-document occurrence matrix by SVD. Similarly, by using
the pLSA approach, the topic-specific distributions of words can be con-
sidered dimensions of a concept space.

In the proposed space, the distances between words represent the se-
mantic distances which are used for constructing a discriminative and
semantically meaningful vocabulary. Figure 1 shows the flowchart for
constructing the semantic visual vocabulary via embedding into concept
space. We first extract features from patches (cuboids) in the images
(videos). The initial vocabulary is constructed by performing k-means
clustering on the extracted features and choosing the cluster centers as
the codewords. The feature vectors are quantized based on the initial
codebook to form the word-image (or video) matrix which describes the
occurrences of words in images/videos. The codewords are then embed-
ded into the concept space by latent semantic models - we demonstrate
the embedding both by LSA as well as by pLSA.

LSA [1] finds a low-rank approximation for the word-document ma-
trix. Here, document refers to the image or video sequence. Let X be the
occurrence matrix whose rows correspond to words and columns corre-
spond to documents. Decomposing X using SVD as X =UΣVT gives the
orthogonal matrices U and V and the diagonal matrix Σ. Selecting the L
largest singular values and their corresponding singular vectors, we find
the rank-L approximation of X by X ≈ ULΣLVL

T . The column vectors
of UL span the concept space of words and the columns of VL span the
concept space of documents.

pLSA [3] is the statistical version of LSA which defines a genera-
tive model on the data. It is assumed that there is a latent topic variable
zl associated with occurrence of the word wi in the document d j. The
observed variables are wi and d j while zl is latent. The probability of
observation pair P(wi,d j) is P(wi,d j) = P(wi|d j)P(d j). Since the occur-
rence of wi and d j is assumed to be independent, we can marginalize over
latent topics zl in order to find the conditional probability P(wi|d j), i.e.,

P(wi|d j) =
L

∑
l=1

P(wi|zl)P(zl |d j), (1)

where L is the total number of latent topics. Equation (1) is a decom-
position of the word-document matrix, similar to LSA, but with the con-
dition that the values are normalized to be probability distributions. We
fit the model by determining P(zl |d j) and P(wi|zl) given the observation
occurrence matrix. Maximum likelihood estimation of the parameters is
performed using Expectation Maximization (EM) algorithm. Assuming
a vocabulary of M words and N documents, the likelihood function to be
maximized is ∏

M
i=1 ∏

N
j=1 P(wi|d j)

n(wi,d j), where n(wi,d j)

is the number of words wi in the document d j and P(wi|d j) is obtained by
equation (1). The original pLSA algorithm in the unsupervised learning
framework tries to categorize the query document given the learned pa-
rameters [3]. However, we use the pLSA algorithm only to determine the
probabilities P(wi|zl). In fact P(wi|zl) is equivalent to the lth dimension
of t̂i in the LSA framework. Thus, using pLSA we obtain the concept
space embedded vector t̂i as:

t̂i =
[

p(wi|z1) p(wi|z2) ... p(wi|zL)
]T

. (2)

We have tested our approach on the KTH action database and on
the fifteen scene database and have achieved very promising results on
both.We choose the size of the initial codebook as 1500 for both action
and scene experiments.

For action recognition, we use the interest point detector proposed by
Dollar et al.[2] The interest points are detected based on the local maxima
of a response function, which incorporates a Gaussian kernel in the spatial
domain and a Gabor filter in the temporal domain. Cuboids are extracted
around each interest point. The cuboids are described by flattened gradi-
ents. The dimension of the descriptors are reduced to 100 using PCA to
obtain the final feature vectors.For scene recognition, dense features are
more discriminative than sparse ones. Accordingly, we use dense features
sampled using regular grid with space of 8 pixels. SIFT descriptors of
16×16 patches are used on the grid.

One of the advantages of the proposed method is that it allows the
number of topics to be varied, in contrast to pLSA using unsupervised
framework where the number of topics is constrained to be the same as the
number of classe, We have investigated the influence of number of topics
L on the recognition accuracy As the number of topics is increased from
L = 6, which is the number of classes, the recognition rate increases since
the increased number of concepts enables better discrimination between
topics. However, after around L = 30 topics, the recognition accuracy de-
creases. This is mainly because adding more dimensions to the concept
space implies further division into semantic units that are not meaning-
ful.This phenomenon occurs at L = 50 for pLSA. We have obtained the
best result of 93.94% accuracy using pLSA model and the semantic code-
book size of 600, without any spatial or temporal information.

Similar to results of action recognition, the scene recognition accu-
racy improves with increasing number of topics until L = 70 after which,
there is a deterioration in the accuracy.The best result achieved on fifteen
scene dataset with our method is 79.22% using pLSA model and the se-
mantic codebook size of 600.
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