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Abstract 

A feature-preserving non-local means (FP-NLM) filter has been 
developed recently for denoising images containing small and weak particle-
like objects. It explores the commonly used non-local means filter to employ 
two similarity measurements taken in the original greyscale image and a 
feature image which measures the particle probability in the original 
image. In this paper, we report a new approach to image mapping for 
constructing the feature image by incorporating both spatial and temporal 
(2D+t) characteristics of objects. We present a 2D+t FP-NLM filter based on 
the improved particle probability image. Experiments show that the new 
filter can achieve better balance between particle enhancement and 
background smoothing for images under severe noise contamination and has 
a greater capability in detecting particles of interest in such environments. 

1 Introduction 
Denoising of images containing particle-like objects is an important subject in the field of 
image processing. In live-cell microscopic imaging, since excitation of fluorescent probes 
can cause photo-bleaching and photo-toxicity, the light intensity and exposure times that 
can be used are restricted. The requirement to image fast and in multiple dimensions to 
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capture dynamic intracellular events also constrains illumination and exposure regimes. 
These all result in low signal-to-noise ratio (SNR) fluorescence live-cell images [1-3]. 
Denoising techniques become a critical tool for quantitative analysis of these images [1-5]. 
Detection and tracking of small moving targets in synthetic aperture radar (SAR) and 
infrared (IR) images are other areas with military applications, such as for early warning 
and long-range defense. These images can also be low SNR, due to the long distance 
between the targets and imaging devices, unstable radar reflection, IR radiation of the 
targets and complex backgrounds [6,7]. Noise reduction is an important technique to 
improve the contrast of small targets for detection and tracking [7,8]. 

 The feature-preserving approach is currently a popular technique for image denoising. 
A commonly used method for preserving image features is the non-local means (NLM) 
filter [9,10] in which the filtering strength is determined by the Euclidean distance which 
measures the difference of pixel grey values between a reference neighborhood and its 
surrounding neighbors. Patch-based filter (PBF) [4,11] is a state-of-the-art development of 
NLM filter in which the sizes of the searching windows are adaptively selected. However, 
for low SNR images containing particle-like features, such as fluorescence live-cell images 
with mixed Poisson-Gaussian noise contaminations [1-4], the Euclidean distance measured 
in greyscale images may not be robust for preserving the features [12]. Consequently, 
NLM filter and other algorithms that are based on this measurement can lead to loss of 
information and artefacts in denoised images. This calls for new and more robust 
approaches to feature extraction for image recovery under severe noise contamination. 

 In a recent study [12], a feature-preserving non-local means (FP-NLM) filter was 
developed to tackle the above problems. Visually, particle-like features in a single image 
are manifested as localized concentrations of higher value pixels compared to their 
immediate surroundings. Such characteristics have been measured by using 2D (XY 
coordinates) Haar-like features (HLFs) and were adopted for image denoising. Firstly, as 
depicted in Fig. 1(a-c), three directional HLFs in the 2D space are constructed to measure 
the local contrast of a small area centred at pixel i ( ) against its surrounding in a 
noisy image. Within a given scale, s, of a (square) Haar window, the HLFs are defined by 
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where are the normalized weights. A threshold is then introduced kc
λ≥)(iH                                                            (3) 

to classify each pixel i  into two classes: particle and background. A weak threshold in Eq. 
3 is set to ensure that few pixels belonging to particle are wrongly classified. Fig. 1(e) 
shows an example of HLF image, based on Eq. 2-3, obtained from a synthetic noise-
contaminated image Fig. 1(d). The HLF image captures all the particles in the original 
image as judged by comparing with the known noise free data. The over-estimation of 
particle class pixels is due to the use of a weak threshold λ in the presence of noise. 
Secondly, the concept of particle probability is introduced. It is defined at each pixel as the 
ratio of number of pixels that belong to particle and are spatially connected to the total 
number of pixels in a small region centred at the pixel. Fig. 1(f) shows the particle 
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probability image (PPI) of the synthetic image based on the HLF classifications, in which 
the effect of isolated pixels that are falsely classified as particle has been significantly 
reduced. The process for constructing the PPI from the original image can be regarded as 
non-local image mapping. Finally, FP-NLM filter is formulated by extending the 
commonly used NLM filter to employ two similarity measurements taken in the original 
image and the PPI. One adapts the other for a greater balance between particle 
enhancement and background smoothing compared to NLM filter. The denoised image is 
shown in Fig. 1(g), which recovers all particles seeded in the image. 

 
    The performance of FP-NLM filter depends on the quality of the particle probability 
images (PPIs) that are constructed by image mapping. Overestimation of particles in these 
PPIs can become serious when images under investigation are severely noise contaminated 
and a weak HLF classification threshold is used. This is because in this situation the 
increased numbers of false HLF classifications at pixel level can give rise to spatially 
connected clusters, an example of which is shown in the red box in Fig. 1(e). The 
overestimation leads to the appearance of false particle-like features in PPIs, as illustrated 
in Fig. 1(f), which in turn results in artefacts in the denoised image, as already starting to 
appear in Fig. 1(g). The negative effect will become more severe on increasing the noise 
levels in the images, which can seriously limit the power of FP-NLM filter. In this paper, 
we will explore a new approach to PPI mapping by extending Haar-like feature extraction 
from 2D (XY) space to 2D+t space and time domain, where motion continuity in time is 
used as an unambiguous feature to distinguish particles from noise spikes. We show 
through experiments on synthetic and real image sequences that the newly proposed 2D+t 
FP-NLM filter can operate under even greater levels of noise contaminations for image 
denoising and feature recovery. 

2 2D+t feature-preserving non-local means filter 
In this section, we present a new 2D+t feature-preserving non-local means (FP-NLM) filter 
for denoising a single frame in a time-lapse image sequence.  

Figure 1: Particle probability image (PPI) mapping. (a-c) 2D Haar windows H  
(k=1,2,3) proposed in [12]; (d) a synthetic noisy image with Poisson and Gaussian noises 
(standard deviation 

),( sk i

20=σ for 8 bit data) [4]; (e) binary image showing HLF 
classifications (the weak threshold (in Eq. 3) 0.6=λ , bright for λ≥)(iH and dark 

for λ<)(iH ); (f) Particle probability image (PPI); (g) 2D FP-NLM filtered result. 

e f g

V3

V3

U3

V2V2 U2V1 
U1 

і і і 

d 



4 YANG ET AL.: A 2D+T FEATURE-PRESERVING NON-LOCAL MEANS FILTER 
 

2.1 2D+t Haar-like feature-based classification 
a b 

Figure 2: Schematic of 2D+t HLFs. (a) a moving particle in 12 += nN consecutive frames 
that pass through pixel i  at time t , where a-a’, b-b’, …, o-o’ are some of the possible 
trajectories. The coordinate ( ), ′yx

 

′ of pixel i′ at time t  are: ′ θϕ costan ⋅⋅Δ⋅±=′ tnxx and 
θϕ sintan ⋅⋅Δ⋅±=′ tnyy , where tΔ is the time interval between frames, ϕ is velocity 

angle and θ  is direction angle of the motion. (b) parameters at time t tnΔ+ . 
In object detection and tracking, motion continuity is often used as an unambiguous 
property for identifying objects of interest from background in an image sequence. We 
here make use of such motion information of particles to improve the accuracy of Haar-
like feature (HLF) classifications. Assuming constant velocity and direction of particle-like 
objects in neighbouring frames, trajectories of a particle in consecutive frames that pass 
through the pixel 

N
i  at time t  are depicted in Fig. 2(a). For a trajectory that has the 

coordinates  at time point t),( t′′i ′ , we can apply the 2D Haar windows (Fig. 1(a-c)) to 
compute local contrasts at this pixel: ),,(),,(),,( stMstMstH

kk VUk ′′−′′=′′ iii , where 

, and 
kUM

kVM s  have the same definitions as in Eq. 1. If the trajectory corresponds to that 

of a true particle, the values of ),,( stHk ′′i  are usually large (compared to the weak 
threshold value) and their fluctuations are small over the neighbouring frames. Conversely, 
if the trajectory is a false one due to noise contamination, the values of ),,( stHk ′′i  are 
comparably small and fluctuate more considerably over the neighbouring frames. Using 
these facts, we define 2D+t HLFs (XYT coordinates) as 

{ }),,(),,,,(max),( ,, stHsttH ksk iii ⋅= ϕθηϕθ                                    (4) 
where the coefficient 
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measures the consistency of the local contrasts computed for all possible trajectories in N 

consecutive frames, where ∑ Δ+

Δ−=′
′′=

tnt

tntt kk stH
N

stH ),,(1),,,,( ii ϕθ  is the mean value, θ  

( ]2,0[ πθ ∈ ) is the direction angle of the trajectory and ϕ  ( ],0[ Φ∈ϕ ) is the velocity 
angle. The angle 0=ϕ  corresponds to static particles and the maximum angle Φ  to the 
maximum velocity of particles in the time-lapse sequence. The coefficient ),,,,( stϕθη i  is 
introduced to penalize false trajectories in which the pixels over neighbouring frames may 
belong to background or background/particle mixed. The parameter γ  controls the 
sensitivity of the penalization. For images of low SNR and with predominately Gaussian 
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distribution, we set 2.0=γ , which is around 2 times of the standard deviation of the 
normalized local contrasts ),,,,(),,( stHstH kk ϕθii  for trajectories corresponding to true 
particles. Thus,  obtained from Eq. 4 are the consistency weighted maximum 
values of the local contrasts for all possible scales of the Haar windows (

),( tHk i
s ), all possible 

directions of motion ( θ ) and all possible velocities of motion (ϕ ). These Haar-like 
features can in fact be considered as a set of spatiotemporal multi-scale directional filters, 
which involves the motion information extracted by the simple constant velocity (CV) 
motion models. The three 2D+t HLFs  can be combined in the same linear way as 

2D HLFs (Eq. 2), i.e.

),( tHk i

∑ =
=

3

1
),(),(

k kk tHctH ii . For particles of no preferred shape and 

orientation, 31=kc  is the obvious choice. Each pixel in the image is then classified as 
particle class if λ≥),( tH i  (as Eq. 3). 

2.2 Particle probability image 
Because of the finite size of particles, the probability to find a particle depends not only on 
the HLF in the pixel but also those in its immediate neighbours and whether these pixels 
are spatially connected. We make use of this non-local property to construct a particle 
probability image (PPI) from 2D+t HLF classifications. It is defined as the ratio 

( )
i

i AtotNNP Δ=)(                                                     (6) 

where is the total number of pixels in a given area centred at totN iA i ; NΔ is the number 
of pixels that are classified as particle and spatially connected in . The size of can be 
chosen as that of the smallest particle in images. The PPI is generated by measuring Eq. 6 
in each pixel. Since noise spikes are randomly distributed in space, the effects of 
overestimation at the pixel level of particle class by HLF classifications can be 
significantly reduced in the PPI. 

iA iA

2.3 Implementation of a 2D+t feature-preserving non-local means filter 
This section presents a new 2D+t FP-NLM filter that makes use of the improved particle 
probability mapping from that in 2D domain [12]. For a noisy image F, the denoised grey 
value at pixel , , is given as the weighted average of all pixel 

greyscale values in a search window centered at  
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where is the normalization constant,  and  respectively are the vectors of 
the pixel grey values and the particle probability values taken from the neighborhood  
centered at . The first term in Eq. 8 measures similarity of pixel grey values between the 
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two neighborhoods  and , as in the NLM filter [9], whereas the second term 
measures the similarity of particle probabilities between the same neighborhoods but taken 
from the PPI. By appropriately setting the two filtering strength parameters h and g, the 
two measurements can compensate each other to achieve more balanced feature 
preservation and background smoothing, i.e., the effect of inaccurate similarity 
measurement in the greyscale image can be reduced by the same measurement in the PPI, 
whereas overestimation in the PPI will not survive because there is little signature of 
particles in the greyscale image. Moreover, if we pre-process the image  before 
applying Eq. 7, for example by using the mean filter to smooth the classified background 
region, the 2D+t FP-NLM filter can significantly reduce the artefacts in background that 
may be caused by the conventional NLM filtering.  

iN jN

)( jF

3 Experimental results 

3.1 Test on synthetic data 
a  b  c  d  

 
A noise free fluorescence live-cell image sequence, a single frame of which is shown in 
Fig. 3(a), is firstly synthesized by adding more than 80 particles with different size, shape, 
intensity and motion parameters above an uneven background. Three noisy image 
sequences are then constructed by applying a linear model [4] to add Poisson noise and 
three different levels of Gaussian noises (standard deviations σ =20, 30 and 40 for 8 bit 
data) to the noise free data. A single frame for each sequence is shown in Fig. 3(b-d). 

Figure 3. A single frame from a synthetic fluorescence live-cell sequence. (a) noise free 
image; (b-d) corresponding noisy images of (a) with Poisson and three different levels of 
Gaussian noises ( 20=σ (b), 30 (c) and 40 (d)). (b) is the same as Fig. 1(d). 

Test 2D+t HLFs: Since the sizes of particles in the synthetic image sequences are within 
5×5 and 11×11 pixels, 4 different sizes of Haar windows ( s =1 to 4) from 9×9 to 15×15 
are chosen to cover the size range of particles. We set the weak threshold λ  to be 20% of 
the difference of the averaged pixel grey values between a typical particle region and a 
typical background region [12]. 2D HLF classifications of the two images Fig. 3(c) and (d) 
are given in Fig. 4(a) and (g), in which an increased presence of false particle pixels is 
evident on increasing the noise levels. Fig. 4 also shows the classification results of same 
images using 2D+t HLFs for 3 frames (Fig. 4(b) and (h)) and 5 (Fig. 4(c) and (i)) frames, 
where the time interval 15=Δt , the maximum velocity angle 3π=Φ  and the resolutions 
for moving angles θ  and ϕ  are 36=L  and 10=J . Other parameters are the same as 
chosen for 2D HLFs. As seen, though noise is still falsely classified as particles in 2D+t 
HLFs with 3 frames, they intend to be spatially less extended by compared to those by 2D 
HLF classifications, due to the consistency weighted average over 3 frames (Eq. 4-5). 
Because of this, a significant improvement to the PPIs is apparent with the 2D+t image 
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mapping, particularly for images with higher noise levels. We have also computed the 
results using 2D+t HLFs with 5 frames in Fig. 4. While the false particle pixels are further 
reduced on increasing the number of frames, true particle pixels can also be misclassified 
due to severe noise contamination. We find that on balance 2D+t HLFs with 3 frames are 
the preferred choice for images at the given noise levels. 

30=σ  

 
Test 2D+t FP-NLM filter: We have tested the proposed denoising algorithm Eq. 7-8 on 

the synthetic image sequences. The neighborhood is set to be 7×7 pixels, the search 
window is 21×21 pixels, and the first parameter is σα ⋅= 1h  and 9.01 =α  [9,10]. The 
second parameter in 2D FP-NLM filter is set as 2/ασ=g  and 702 =α  [12]. For 2D+t FP-
NLM filter, since the PPI gives more accurate particle information and reduced effect of 
noise spikes, we can increase the second weight in Eq. 8 to further enhance particles while 
keeping artefacts at minimum level. So we set 2/ασ=g with 1502 =α . The denoised 
results of Fig. 3(c) by 2D+t FP-NLM and corresponding 2D FP-NLM filters are shown in 
Fig. 5(a) and (b), where  in both filters are obtained by applying mean filter of 

pixels to  in the classified background regions (Fig. 4(a) and (b)). Particles are 
preserved very well in Fig. 5(a) and (b), including those of barely visible in the noisy 
image Fig. 3(c). Moreover, Fig. 5(a) shows an increased particle visibility compared to 
Fig. 5(b), particularly for weak particles. We have also presented the denoised results of 
the same image by NLM filter and PBF in Fig. 5(c) and (d). We can see that both 2D+t and 
2D FP-NLM filters perform noticeably better than NLM filter and PBF. For comparisons 
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Figure 4. HLF classification and PPI obtained from the raw images Fig. 3(c-d). (a-c) 2D 
HLFs (a), 2D+t HLFs: 3 frames (b) and 5 frames (c) of Fig. 3(c); (d-f) PPIs corresponding 
to (a-c); (g-i) 2D HLFs (g), 2D+t HLFs: 3 frames (h) and 5 frames (i) of Fig. 3(d); (j-l) 
PPIs corresponding to (g-i). Here the threshold λ  for classification is set to 6.0.  
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of these algorithms in more details, we plot the denoised results (Fig. 5(g-m)) for a small 
image area given in Fig. 5(f), taken from the squared window in Fig. 3(c). As seen, over-
smoothing by NLM filter and PBF on weak particles is evident (Fig. 5(l-m)). 2D+t FP-
NLM filter (Fig. 5(h)) performs better on enhancing the signal intensity of particles than 
2D FP-NLM filter (Fig. 5(j)) thanks to a larger filtering strength for particle preserving 
(parameter 2α ), particularly for weak particles (compare the particle areas marked by 
squares in Fig. 5(h) and (j)). We note that the higher signal intensity can also be obtained 
by increasing 2α for the 2D FP-NLM filter (compare the same square-enclosed particle 
areas in Fig. 5(j) and (k)), but false classifications by 2D HLFs will be also enhanced as 
artifacts (compare the background areas marked by circles in Fig. 5(i) and (k)). Thus, the 
capability of the 2D FP-NLM filter is limited compared to 2D+t FP-NLM filter. To 
quantify image fidelity of the denoised results, we calculate the peak signal-to-noise ratio 
(PSNR) [11,12] for the denoised results of images Fig. 3(b-d) using the above filters and 
other commonly used algorithms. The latter includes nonlinear anisotropic diffusion 
(NAD) [13], total variation (TV) minimization [14], Wiener filtering (WF), bilateral 
filtering (BF) [15], all the parameters for these filters have the same values as in [12]. The 
results in Table 1 show that the 2D and 2D+t FP-NLM filters generally achieve a higher 
PSNR compared with other filters, and the 2D+t FP-NLM filter has a better capability in 
restoring images with more severe noise contamination (σ =30 to 40). 

 

Figure 5. Denoising results on Fig. 3(c). (a) 2D+t FP-NLM filter (3 frames); (b) 2D FP-
NLM filter; (c) NLM; (d) PBF; (e) a selected noise free region and (f) the corresponding
noisy region taken from Fig. 3(a) and (c); (g-m) are the test results of (f): (g) PPI by the 
2D+t HLFs; (h) 2D+t FP-NLM filtered; (i) PPI by the 2D HLFs; (j-k) 2D FP-NLM filtered 
with parameter 

b c

e f i j k l m 

a 

g 

d 

h

σε / PSNR NAD TV BF WF NLM PBF 2D FP-NLM 2D+t FP-NLM 
20/21.91 32.69 33.75 31.24 31.78 32.36 34.21 35.27 34.94
30/18.61 31.30 31.89 27.90 30.14 30.22 32.13 32.88 33.76 
40/16.43 26.23 29.16 23.88 29.05 29.26 30.08 30.57 31.96 

Table 1: Performance comparisons of denoising algorithms. 

3.2 Test on real data 
We have further tested our 2D+t FP-NLM filter on a real live image sequence of EB1-
GFP, expressed in the Drosophila egg chamber where the microtubule cytoskeleton is 
complex and the imaging is challenging. The image sequence was collected on a 

702 =α (j) and 902 =α (k); (l) NLM filtered and (m) PBF filtered. 
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DeltaVision imaging system over three Z planes. Fig. 6(a) is a frame from a single Z plane 
(low SNR image sequence) at time-point 115 (of 180) to be used for test. The EB1 foci (or 
particles) are barely visible. By average projection of the three Z planes, a corresponding 
high SNR image sequence in which the particles are visible can be obtained (the frame 115 
is shown in Fig. 6(b)). The particles in the low SNR frame can be manually identified by 
comparing the corresponding tracks in the low/high SNR sequences. 

 

Figure 6. Test on time-lapse sequence. (a) a frame from low SNR sequence: single time
point, single Z plane, and the noise standard deviation measured on the raw data is

30=σ ; (b) corresponding frame from good SNR sequence: 3Z average projected; (c-d) 
denoising results from (a) by 2D+t FP-NLM (c) and 2D FP-NLM (d) filters, the threshold 

0.6=λ , σ9.0=h , 150σ=g (c) and 70σ=g  (d); (e-k) test on a subregion marked in 
(a): (e) manual identification of EB1 particles in the subregion, where the crosses indicate
the locations of the particles, green: strong, yellow: weak, red: not visible; (f-g) PPI by 
2D+t HLFs (f) and 2D+t FP-NLM filtered (g); (h-i) PPI by 2D HLFs (h) and 2D FP-NLM 
filtered (i); (j) NLM filtered; (k) ROC curves comparing denoising performance.
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    2D+t and 2D FP-NLM filtered results on the single frame Fig. 6(a) are shown in Fig. 
6(c) and (d), where all the filtering parameters are chosen to be the same as in the synthetic 
test except that 4 different sizes of Haar windows are chosen from 7×7 to 13×13, because 
the smallest particles to be identified here are around 4×4 pixels. As can be seen, both the 
filters can significantly enhance the particles and smooth the noisy background. The 
particles in a subregion marked by a white box in Fig. 6(a) have been manually identified, 
as shown in Fig. 6(e). Due to the more accurate HLF classifications (compare Fig. 6(f) and 
(h) to (e)), 2D+t FP-NLM filter enhances better barely visible particles and generates fewer 
artefacts than 2D FP-NLM filter (compare Fig. 6(g) to (i)). For comparison, the NLM 
filtered result on the same subregion is shown in Fig. 6(j), where most of the particle-like 
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features have been over-smoothed. Since an important task for denoising the images is to 
detect particles, we have computed the receiver operating characteristic (ROC) curves for 
the binarized denoised images as the threshold is varied. Here true positive rate (TPR) and 
false positive rate (FPR) are measured against a ground truth of the subregion, which is 
generated by the same method described in [12]. As seen from Fig. 6(k), the 2D+t FP-
NLM filtered image shows higher sensitivity to pick out true particle pixels than that 
generated by applying the 2D FP-NLM filter and other commonly used algorithms 
mentioned earlier. The results imply the 2D+t FP-NLM filter is a better algorithm to be 
used for particle detection in image sequences with high levels of noise contamination.  

4 Conclusion 
We have presented a new 2D+t FP-NLM filter for denoising images and improving 
detection of barely visible weak particles with high levels of noise contamination. Tests on 
synthetic and real biological image sequences show that the new algorithm achieves a 
better performance in enhancing particle contrast, smoothing background and minimizing 
artefacts. We note that while a simple CV motion model is used to construct the 2D+t 
HLFs, it requires only 3 consecutive image frames in applications as discussed earlier and 
can apply as a good approximation to image sequences of varying particle velocity and 
direction if the variations are small within the 3 image frames. Moreover, since HLFs are 
obtained in Haar windows with different scales, they also give tolerance to variations of 
particle velocity and direction for their measurements. The CV motion model is therefore a 
simple but effective approach in extending the FP-NLM filter from 2D to 2D+t domain. 
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