Active 3D Segmentation through Fixation of Previously Unseen Objects
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We present a method for active object segmentation based on integra-
tion of several cues; image point positions, binocular disparities and pixel
colours. It serves as a framework for generation of object hypotheses of
previously unseen objects in natural indoor scenes. The appearance, 3D
shape and size of objects are modelled in an iterative manner using an
approximate Expectation-Maximisation (EM) method, that takes the de-
pendencies between neighbouring pixel labels into consideration, unlike
typical methods that assume neighbouring pixels to be independent.

To better cope with situations when an object is hard to segregate from
the surface it is placed on, possibly due to ambiguities in appearence, we
propose a flat surface model as a complement to the two models typically
used in figure-ground segmentation. A flat surface assumption is reason-
able, given that most objects in indoor scenes are placed on flat, or at least
locally flat, surfaces. We will show that even if no such physical plane ex-
ists in the scene, foreground segmentation succeeds anyway, since the flat
surface model will become just another background model. We further let
the segmentation evolve over time, this in order to provide more informa-
tion and gradually improve segmentation and to facilitate tracking.

Figure-ground segmentation is done using three different models, each
described by a set of parameters; the foreground model 6y, the back-
ground model 6, and that of the flat surface 6;. Each pixel has an asso-
ciated label I; € {If,lp, [}, depending on which component it belongs to.
The model parameters 6 = 67U 6, U 0; and the labellings of all pixels
1= {l;} are unknown and estimated from the measurements m = {m;} at
each pixel. With EM the maximum likelihood estimate of the model pa-
rameters 0 is computed iteratively in two steps. In the first step (E-step)
the conditional distribution w(l) = P(1jm, 6’) is computed using the cur-
rent estimate 6’ and in the second step (M-step) a new estimate is found
by maximising Q(6|6’) = Yyw(l)log P(m,1|0). Unfortunately, since this
summation is done over N° different labellings, where N is the number
of pixels, it quickly becomes prohibitly expensive. To make it compu-
tationally tractable we replace w(l) with the product of the conditional
marginals for each unobserved label, w(l;) = P(;jm,8’). Since a mea-
surement m; depends only on its associated label /;, the second step be-
comes a maximisation of

01(010) =Y Y w(li)logP(m;,1;]6),

i el

&)

that is a summation over just 3N labels. The figure-ground segmentation
is implicitly determined by the marginals w(l;), which are computed with
loopy belief propagation [5] in the E-step.
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Figure 1: The Ist, Sth and 10th updates of a segmented toy cat. White
areas in the bottom row show the foreground, grey the flat surface and
black the remaining background points.

There are two reasons for using belief propagation, rather than max-
imum a posteriori (MAP) estimation with graph-cuts, which is more fre-
quently used for segmentation [1, 4]. First, an MAP estimate might well
be an extreme case, not representative of the overall distribution, since
it is based on only one set of labels, the one that happens to maximise

the posterior. Second, the passing of messages in belief propagation is
highly deterministic and there are ways to divide the problem into steps,
so that each step involves messages that are independent and can thus be
easily parallalised. This is in contrast to graph-cut methods, that are less
deterministic both in terms of local operations and number of required
passes. Figure 1 shows some images from a real-time experiment, for
which belief propagation was implemented on a GPU, resulting in an up-
date frequency of about 8 Hz, which is fast enough for tracking.

Figure 2: A wide field view in which object hypotheses are searched using
attention (upper left) and segmentations of each found hypothesis in the
foveated view.

Critical to any iterative segmentation system is the initialisation phase.
A targeted foreground region has somehow to be pointed out, either man-
ually or through some other mean. Unlike systems for off-line image
manipulation [4], an autonomous system does not have the luxury of a
human operator in the loop. Object detection has been proposed as a
mean for initialisation [3], but this implies you have some model of what
to detect, which is not possible when working with previously unseen
objects. In this paper we instead use binocular fixation for unsupervised
initialisation. While image points are densely packed, 3D points appear in
clusters. These clusters may serve as bottom-up cues for object detection,
regardless of appearance and shape. The only, to our knowledge, previous
similar work is that of Mishra and Aloimonos [2], which however suffers
from a significantly higher computational cost. The segmentation results
shown in Figure 2 were autonomously produced by an attention based fix-
ating stereo head system, that visits regions of interest and for each region
segments whatever is located in the centre of view. More details on the
specifics can be found in the full version of the paper.
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