
LÓPEZ-NICOLÁS, SAGÜÉS: CATADIOPTRIC CAMERA MODEL WITH CONIC MIRROR 1

Catadioptric camera model with conic mirror
G. López-Nicolás
gonlopez@unizar.es

C. Sagüés
csagues@unizar.es

Instituto de Investigación
en Ingeniería de Aragón,
Universidad de Zaragoza,
Spain

Abstract

Catadioptric systems consist of the combination of lenses and mirrors. From them,
central panoramic systems stand out because they provide a unique effective viewpoint,
leading to the well-known unifying theory for central catadioptric systems. This paper
considers catadioptric systems consisting of a conic mirror and a projective camera. Al-
though a system with conic mirror does not possess a single projection point, it has some
advantages as the cone is a very simple shape to produce, it has higher resolution in the
peripheral, and adds less optical distortion to the images. The contributions of this work
are the model of this non-central system by means of projective mappings from a torus to
a plane, and the definition of the conic fundamental matrix with a role similar to that of
perspective cameras. Additionally, a procedure to compute the relative motion between
two views from the conic fundamental matrix is presented.

1 Introduction
Vision systems stand out from other types of sensors because they provide very rich infor-
mation and because of their versatility and low cost. For the last years, the use of omnidirec-
tional cameras is growing because of their effectiveness due to the panoramic view from a
single image. A main class of cameras are the catadioptric systems, consisting of the combi-
nation of lenses and mirrors. Single viewpoint is a desirable property of a camera system, and
the complete class of central catadioptric sensors with one mirror and lens are treated in [1].
A unifying theory for all central catadioptric systems was proposed in [6] and extended in
[2]. In these works, the image formation model is developed by defining the well-known uni-
fied sphere model. Although having a single viewpoint is a desirable requirement in design,
other features may be considered depending on the application. Usual central catadioptric
cameras are built combining a hyperbolic mirror with a perspective camera or a parabolic
mirror with a orthographic camera.

This paper considers catadioptric systems using a conic mirror and a projective camera.
Some of the advantages compared with usual catadioptric systems are that the cone is a
very simple shape to produce, it has higher resolution in the peripheral and adds less optical
distortion to the images [11]. Another advantage compared with paracatadioptric systems is
that a perspective camera is used instead of an expensive and complex orthographic camera.
The use of conic mirror results in a non-central camera system. When the viewpoint of the
perspective camera coincides with the vertex of the conic mirror, a central camera system is
obtained [1]. This particular case has been studied in [11] showing its feasibility but reducing
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the configuration possibilities. Thus, despite non-centrality, the versatility of the conic mirror
setup is a desirable property as shown for example in the single mirror stereo arrangement
proposed in [3]. The field of view of the conic mirror system is smaller but more flexible.
In fact, the smaller vertical field of view can be seen as an advantage because it provides
higher angular resolution with the same number of pixels. For example, the camera is out of
its field of view and it is not projected in the image plane (so part of the image is not wasted
imaging the sensor itself) [12]. As said, the conic mirror and camera system is non-central,
and the contribution of this work is the projection model for this system. This is achieved
by exploting the concept of unitary sphere model to the unitary torus model and taking into
account that the viewpoint of this system lies on a circular locus.

The estimation problem of the epipolar geometry using omnidirectional vision has been
studied for central cameras [16], [7] or approximately central cameras [14]. Multi-view ge-
ometry is investigated in [15] considering a highly general imaging model using Plücker
coordinates for central or non-central camera types. The epipolar geometry has been inves-
tigated for linear pushbroom cameras [9], for crossed-slits projection [4], and for circular
panoramas [13]. In this work, the epipolar geometry of the catadioptric non-central camera
system considered is tackled, and the conic fundamental matrix is defined with a role sim-
ilar to the fundamental matrix of perspective cameras. The procedure to estimate the conic
fundamental matrix from point correspondences is outlined. As application, camera motion
between two conic views is obtained from this fundamental matrix.

The paper is organized as follows. Section 2 presents the camera model with a conic mir-
ror. The conic fundamental matrix is derived in Section 3. Section 4 proposes the method to
compute the relative motion between two views from the conic fundamental matrix. Simu-
lations are provided in Section 5 to illustrate the proposal.

2 Conic mirror imaging
In this section we describe the geometry of the imaging system and define the catadioptric
camera model using the conic mirror. The different parameters and coordinate systems in-
volved are depicted in Fig. 1. The vertex of the conic mirror is Om, and Oc is the centre of
the projective camera. The conic mirror and the camera are vertically aligned with respect
the symmetry axis. The angle at the vertex of the cone is 2τ and the focal length of the cam-
era is f . The distance from the mirror vertex to the camera centre is fm. The origin of the
coordinate system is the vertex of the cone with the z-axis aligned with the camera optical
axis. It is known that the viewpoint of this camera system lies on a circular locus of radius
fx vertically translated fz with respect to the vertex of the cone [1], where

fx = fm sin(2τ) , and fz = fm cos(2τ) . (1)

The parameter α is also defined as (α + τ) = π/2.

2.1 Point projection through the conic mirror

Let us consider a world point p with coordinates (X ,Y,Z)T in a general reference system with
origin Om and z-axis aligned with the camera optical axis. For the subsequent development,
it is interesting to align the x-axis of the reference with the vertical projection of the world
point. This can be done by rotating the reference ϕ = arctan2(Y,X) around the z-axis in such
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Figure 1: Geometry of the conic mirror and camera system. A world point p is projected in
the image plane pc and the unitary torus pt. The coordinate systems and geometric parame-
ters are described in the text.

a way the new coordinates (px, py, pz) of p are obtained as

px =
√

X2 +Y 2 , py = 0 , and pz = Z , (2)

This step can be performed with each world point in order to obtain its particular coordinate
system with origin Om as depicted in Fig. 1. Notice that, in this reference system, px is the
radial coordinate of the world point. Now, the center of projection of a particular world point
is denoted Ot. Thus, the point p is projected through Ot intersecting the mirror surface in
pm. The equation of the ray from p to Ot is given by

z− pz

x− px
− fz + pz

fx + px
= 0 . (3)

On the other hand, the equation of the mirror surface is

z ± x/ tanτ = 0 . (4)

The coordinates (xm,zm) of the point pm are the solution of (3) and (4). Next, the mirror
point pm is projected through the optical centre of the camera Oc. The equation of the ray is

(zm + z)/(xm− x)− (zm + fm)/xm = 0 . (5)

Finally, the intersection of this ray with the image plane yields

xc = xm− xm( f + fm + zm)/( fm + zm) , (6)

which is a radial coordinate that determines, together with ϕ , the image projection pc.
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2.2 The unitary torus model
The unitary torus model is inspired on the idea of the unified sphere model for central cam-
eras presented in [6], [2]. In central cameras, a section of the unitary sphere along the
symmetry axis gives a unitary circle. In our case, the revolution of the unitary circle in each
viewpoint across the circular locus yields a torus. Firstly, we define the coordinate system
(xt ,zt) with origin Ot and z-axis aligned with the segment OtOc as shown in Fig. 1. In the
following, the superindex t denotes that the value is referred to the Ot coordinate system.
The distance d can also be computed using

d = OtOc =
√

f 2
x +( fm− fz)2 = 2 fm sinτ . (7)

The general equation of the torus particularized to the unitary torus is defined as(
fx−

√
x2 + y2

)2
+(z− fz)2 = 1 , (8)

where the centre of the tube is the circle of radius fx (i.e. the circular locus on which the
viewpoint of the camera system lies) and the radius of the tube is the unit. The section of
the torus is represented in Fig. 1 with two symmetric circles. The point on the mirror pm in
the coordinate system with origin in Ot is given by xt

m = f t
x + zm /cosτ and zt

m = f t
z , where

f t
x = fx cosα + fz sinα and f t

z = − fx sinα + fz cosα . The point on the unitary torus can
be obtained normalizing the point coordinates and projecting to the image plane yielding
xt

c = f xt
m/ f t

z , which is the projection of the world point up to a rotation of the reference
system. Finally, the image point can be obtained as

xc =
xt

c + f tanα

1− (xt
c/ f ) tanα

, (9)

Which gives an equivalent result as in (6). This procedure can be carried out inversely to
reproject any image point to the unitary torus. Then, given the coordinates xc and ϕ of a
point in the image, it can be reprojected onto the torus following these steps:

1. Coordinate transformation: xt
c = xc− f tanα

1+(xc/ f ) tanα

2. Reproject to the unitary torus obtaining the pt
t with coordinates (xt

t ,z
t
t) in the reference

system at Ot: xt
t = λxt

c/ f , and zt
t = λ with λ = 1/

√
1+(xt

c/ f )2

3. Coordinate transformation: xt = xt
t cosα − zt

t sinα , and zt = xt
t sinα + zt

t cosα

The result is a point pt projected onto the torus (xt ,zt ,ϕ), playing a similar role as the point
in the unitary sphere for central cameras. This is a unified representation with a model based
on the unitary torus.

3 The conic fundamental matrix
The epipolar geometry represents the relative geometry between two views of a scene. The
fundamental matrix is the algebraic representation of this epipolar geometry and it is used to
formulate the epipolar constraint for image correspondences. It is independent of the scene
structure and only depends on the relative configuration of the cameras and their intrinsic
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parameters [10]. In this section, a novel conic fundamental matrix is presented with a role
similar to the fundamental matrix for perspective cameras.

Let us suppose the camera matrices of two views are P and P′ with the origin of the
global reference at the second camera. Representing the points of the world and the points
on the unitary torus by homogeneous coordinates, the projection can be represented as xt

yt
1

 = P


X
Y
Z
1

 ,

 x′t
y′t
1

 = P′


X
Y
Z
1

 , (10)

where (X ,Y,Z,1)T is a world point and {(xt ,yt ,1), (x′t ,y
′
t ,1)} are two correspondent points

on the unitary torus. Notice that the points have been normalized by the third coordinate
(zt ,z′t). The camera matrices are represented by 3×4 matrices defined as

P =
[

Rc Tc
] [

R T
0 1

]−1

(11)

P′ =
[

R′
c T′

c
] [

R′ T′

0 1

]−1

, (12)

The rotation and translation of the first camera with respect to the origin are given by

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 , T =

 tx
ty
tz

 . (13)

Without loss of generality we have assumed the second camera in the origin, and thus R′ = I
and T′ = 0. Finally, the part related with the projection on the unitary torus is defined for
both cameras as

Rc =

 cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1

 , R′
c =

 cosϕ ′ sinϕ ′ 0
−sinϕ ′ cosϕ ′ 0

0 0 1

 , Tc = T′
c =

 fx
0
fz

 , (14)

where ϕ has been previously defined and ϕ ′ is analogous, but including the motion of the
first camera. The projection equations (10) can be written in a different form as

xt 0
P yt 0

1 0
0 x′t

P′ 0 y′t
0 1




X
Y
Z
1
−zt
−z′t

 = 0 . (15)

The 6×6 previous matrix is denoted A. The previous equation must hold for any point of the
scene and therefore, det(A) = 0. Developing the determinant of A and rearranging terms, it
can be proved that there exists a 5× 5 matrix F that we call the conic fundamental matrix
satisfying 

cosϕ ′

sinϕ ′

x′t cosϕ ′

x′t sinϕ ′

1


T

F


cosϕ

sinϕ

xt cosϕ

xt sinϕ

1

 = 0 . (16)
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The entries of F only depend on the two camera matrices (P,P′). Notice also that the lifted
coordinates of the image point correspondences on the unitary torus do not depend on the
coordinates (yt ,y′t). This is because of the axial symmetry of the catadioptric camera system
and the selected coordinate reference system defined for the imaging model. Finally, the
conic fundamental matrix is given by

F =


0 0 f13 f14 f15
0 0 f23 f24 f25
f31 f32 f33 f34 f35
f41 f42 f43 f44 f45
f51 f52 f53 f54 f55

 , (17)

where the conic fundamental matrix entries are defined as

f31 =−r21 fx f32 = r11 fx f33 =−r21 r33 fz + r21 (tz + fz)+ r31 r23 fz− r31 ty
f41 =−r22 fx f42 = r12 fx f34 = r11 r33 fz− r11 (tz + fz)− r31 r13 fz + r31 tx
f51 =−r23 fx f52 = r13 fx f35 =−r11 r23 fz− r21 tx + r11 ty + r21 r13 fz
f13 = r21 r33 fx− r31 r23 fx f43 =−r22 r33 fz + r22 (tz + fz)+ r32 r23 fz− r32 ty
f14 =−r11 r33 fx + r31 r13 fx f44 = r12 r33 fz− r12 (tz + fz)− r32 r13 fz + r32 tx
f15 = r11 r23 fx− r21 r13 fx f45 = r22 r13 fz− r22 tx− r12 r23 fz + r12 ty
f23 = r22 r33 fx− r32 r23 fx f53 = r23 (tz + fz)− r33 ty
f24 =−r12 r33 fx + r32 r13 fx f54 =−r13 (tz + fz)+ r33 tx
f25 = r12 r23 fx− r22 r13 fx f55 = r13 ty− r23 tx

(18)

3.1 Estimation of F from point correspondences
The conic fundamental matrix can be computed from a set of point correspondences, without
knowledge of the relative camera positions, using the constraint (16) by solving a linear
system of equations. The lifted coordinates are obtained from the normalized points of
the unitary torus: (xt ,yt ,1) and (x′t ,y

′
t ,1). Each point correspondence gives an equation.

Given that F is defined by 21 unknown entries, a set of 20 point correspondences allows to
determine F up to a scale factor by solving a linear system of equations. In general, more
than the minimum set of correspondences are available and the presence of image noise or
mismatches is assumed. Then, a robust method for estimation like RANSAC [5] can be used.

3.2 Epipolar curves
The epipolar geometry for perspective cameras involves the epipoles, defined as the inter-
section point of the baseline with the image plane, and the epipolar lines, which are straight
lines defined as the intersection of the plane containing the baseline with the image plane
[10]. These geometric entities do not represent the corresponding conic mirror and camera
system constraints. Let us consider the lifted coordinates of a point correspondence in two
views satisfying the constraint (16). Fixing a point in the first view, all the possible matched
points are obtained as 

a
b
c
d
e

 = F


cosϕ

sinϕ

xt cosϕ

xt sinϕ

1

 , (19)
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where (a,b,c,d,e)T determines the epipolar curve. The corresponding point in the second
camera system lies on the epipolar curve, therefore


cosϕ ′

sinϕ ′

x′t cosϕ ′

x′t sinϕ ′

1


T 

a
b
c
d
e

 = 0 . (20)

This previous equation plays a similar role for the epipolar curve than the epipolar line of
projective cameras.

4 Extraction of motion from F

The relative motion between two projective cameras can be computed from the decomposi-
tion of the fundamental matrix as summarized in [10]. With the same goal, a procedure for
the motion extraction given the conic fundamental matrix F (17) is presented. Firstly, the ro-
tation matrix (R = ri j with i, j = 1,2,3) between the two cameras is computed by retrieving
the three rows of R separately. On the one hand, the first row of R can be obtained from the
second column of F:

(r11, r12, r13)
T =

−( f32, f42 f52)
T

‖( f32, f42, f52)‖
. (21)

On the other hand, the second row of R can be obtained from the first column of F:

(r21, r22, r23)
T =

−( f31, f41 f51)
T

‖( f31, f41, f51)‖
. (22)

Finally, the third row of R can be computed solving a linear system derived from the first
and second rows of F:

−r23 0 r21 − f13
0 −r23 r22 − f23

r13 0 −r11 − f14
0 r13 −r12 − f24




r31
r32
r33
1

 = 0 . (23)

After solving the system, the norm ‖(r31, r32, r33)‖ is used to normalize the resultant vector
(r31, r32, r33)T . Alternatively, the third row of R can be obtained from the cross product of
the other two rows. Notice that each row of R has been normalized to hold with the rotation
matrix properties, i.e. that each row (or column) has unitary norm. Notice also that there are
two solutions for the rotation depending on the sign factor of the fundamental matrix (F,−F)
leading to (R,−R). The correct solution may be selected by testing point correspondences
with both solutions.

Secondly, the translation vector T = (tx, ty, tz)T between the two cameras is computed
solving a linear system which is defined by using the entries of the conic fundamental matrix
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Figure 2: Example of an image acquired with the conic mirror and camera system (left).
Unwarping by direct mapping from polar coordinates to Cartesian coordinates (right-top)
and unwarping using the unitary torus model (right-below).

fi j with i, j = 3,4,5. Denoting t f z = tz + fz we can write

0 −r31 r21 (r31r23− r21r33) fz− f33
0 −r32 r22 (r32r23− r22r33) fz− f43
0 −r33 r23 − f53

r31 0 −r11 (r11r33− r31r13) fz− f34
r32 0 −r12 (r12r33− r32r13) fz− f44
r33 0 −r13 − f54

−r21 r11 0 (r21r13− r11r23) fz− f35
−r22 r12 0 (r22r13− r12r23) fz− f45
−r23 r13 0 − f55




tx
ty
t f z
1

 = 0 (24)

Solving the previous system, the translation is obtained up to a scale as T = (tx, ty, t f z− fz)T .

5 Experiments
In this section, we present simulations to illustrate the proposal. The camera system is de-
fined with the configuration depicted in Fig. 1 using the following parameters: τ = π/6,
fm = 40 mm and f = 10 mm. The size of the acquired images is 800×600 pixels with opti-
cal center (400,300) pixels. The scene consists of four vertical planes with squared pattern.
An example of an image acquired is shown in Fig. 2.

Some applications may require unwarping the omnidirectional images into panoramic
images. Different methods to transform images acquired with hypercatadioptric systems
into panoramic images were described in [8]. In the example of Fig. 2, a panoramic image is
created from the omnidirectional image acquired with the conic mirror system by mapping
the image pixels into a cylindrical plane. The direct mapping from polar coordinates to
Cartesian coordinates is compared with the image unwarping using the unitary torus model
proposed (Fig. 2, right). The results show that the distortions produced by the conic shape of
the mirror are removed, and only remains the perspective distortion and the usual distortion
of panoramic images.

In the next experiment, the camera system is translated and rotated arbitrarily along time
with tx = 2cos(t)+5, ty = 4sin(2t)−5, tz = 1 for the translation and rx = 10sin(t), ry =−8,
rz = 10−2t for the rotation with respect to each Cartesian axis. The point correspondences
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Figure 3: Evolution of the conic fundamental matrix entries fi j as a result of the camera
motion (left). Extraction of the relative camera motion (m and deg) from the conic F (right).

between the image with the camera system at the origin and the images acquired by he
camera system translated and rotated are used to compute the conic fundamental matrix.
The evolution of the normalized conic fundamental matrix entries is shown (Fig. 3, left).
The relative motion is also computed from the conic fundamental matrix coinciding with the
motion defined (Fig. 3, right).

6 Conclusion
A novel model for catadioptric camera systems with conic mirrors has been presented. The
contributions are the conic mirror imaging model based on the unitary torus model, the
conic fundamental matrix definition and the procedure to compute relative motion between
two conic views. The advantages of using conic mirrors in the acquisition system has been
previously acknowledged. The interest of the proposal is that the definition of the model
allows to use the non-central camera system with conic mirror in a simple way.
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