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In computer vision, a common task is to estimate model parameters from a
set of feature matches containing outliers using a hypothesize-and-verify
approach [2]. We present a deterministic scheme for selecting samples
that combines matching scores, ambiguity and past performance of hy-
potheses generated by the matches. At every stage the best matches are
chosen to generate a hypothesis. The result is a system that is able to
operate very efficiently on ambiguous data.

Multiple matches belonging to a single feature are mutually exclu-
sive events, so two matches of equal quality score each have a probability
≤ 0.5 and are much less likely to be valid than a unique match with the
same score. We exploit the additional information provided by the alter-
native match scores in order to compute a probability for each putative
correspondence.

(a) (b)
Figure 1: Multiple matches: (a) a discrete error score is calculated for
each correspondence; (b) multiple matches from a single feature.

The frame-to-frame matching process is illustrated by Figure 1. Each
feature in the current frame is compared to all n features in the previous
frame. Each feature will generate at most one correct match. If one match
is correct, the remaining (n−1) match scores are generated by incorrect
correspondences. Alternatively, all n match scores may be generated by
incorrect correspondences due to occlusion.

Each false match generates a match score drawn from a probability
distribution. The match scores are generated by each putative correspon-
dence as independent trials and the probability that n false matches will
generate a particular set of match scores is given by the multinomial dis-
tribution,

Mult(m1,m2, . . . ,mK |µ,n) =
n!

m1!m2! · · ·mK!

K

∏
k=1

µ
mk
k , (1)

where mk is the number of false matches that generated a match with score
k. The parameters µ = (µ1, . . . ,µK)

> give the probability of a single false
match generating match score k, subject to 0≤ µk ≤ 1 and ∑k µk = 1.
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Figure 2: Probability distributions for error scores generated by (a) false
matches; (b) correct matches.

Several competing explanations are compatible with the set of ob-
served match scores for each feature. Let P(ck) be the probability that a
feature has a correct correspondence with match score k and P(c /0) be the

probability that the feature has no correct correspondence in the previous
image. The probability of the event E j, one correct match with score j and
(n−1) false matches, is given by

P(E j) = P(c j)Mult(m1,m2, . . . ,m j−1, . . . ,mK |µ,n−1). (2)

P(E /0) = P(c /0)Mult(m1,m2, . . . ,mK |µ,n) (3)

is the probability of event E /0, no correct match and n false matches. The
posterior probability P(ci|m1, . . . ,mK) that a correct match exists with er-
ror i given the observed set of match scores is therefore

P(ci|m1, . . . ,mK) =
P(Ei)

∑
K
j=0 P(E j)+P(E /0)

. (4)

The parameters µ are obtained by considering intraframe matches.
Matches between two distinct features in the same image are guaranteed
to be false. False matches are easily harvested from video to obtain the
false match distribution in Figure 2.
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Figure 3: Time-to-solution comparison: (a) indoor; (b) hedge.

PROSAC [1] draws each hypothesis from a gradually expanding pool
of the best samples ordered by match score. The predetermined rate at
which this pool is expanded is designed to provide a balance between
reliance on the initial sorting and the RANSAC approach which treats all
correspondences as equally likely. PROSAC only exploits the ordering of
the samples by match score. If more accurate probabilities are available
(by taking into account alternative match hypotheses) these can be used
to govern the rate at which new samples are tried.

If a hypothesis generated from a set of samples fails to generate con-
sensus, then it is likely that at least one of the samples used is a false
match. This can be used to update (by reducing) the probability that each
match being considered is correct. Consider a minimal set consisting of
four matches A, B, C and D. The prior probability of the minimal set
containing only correct matches is given by P(A∩B∩C∩D). The out-
come of a failed test removes this event from the joint distribution and the
posterior probability that match A is correct becomes

P(A|Ā∪ B̄∪C̄∪ D̄) =
P(A)−P(A∩B∩C∩D)

1−P(A∩B∩C∩D)
. (5)

The updated matches are removed from and reinserted into the list so
that it remains sorted by match probability. At each iteration we always
choose the most likely matches at the top of the list.
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