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The automatic detection of objects within complex volumetric im-
agery is becoming of increased interest due to the use of dual energy
Computed Tomography (CT) scanners as an aviation security deterrent.
These devices produce a complex volumetric image akin to that encoun-
tered in prior medical CT work but in this case we are dealing with a
complex multi-object volumetric environment including significant noise
artefacts. Prior work on the automatic recognition of objects within this
complex 3D volumetric imagery is very limited. The only prior work of
Bi et al. [3] took 3D CT volumes and attempted recognition of an item
of interest but reduced the problem to two dimensions by looking at the
item characteristic cross section. By contrast here we consider explicit
3D recognition of items within the 3D CT volume domain.

An example of a 3D scan of an item of baggage is shown in Figure
1 where we see the presence of an item of interest amongst more general
cluttered items.

Figure 1: 3D volume of complex bag containing a revolver

The CT imagery suffers from: significant artefacts caused by the pres-
ence of metallic objects (Figure 2); resolution is anisotropic and limited
to [1.6mm ×1.6mm × 5mm]. The metal artefacts radiate out in the x-y
plane and do not remain consistent from one scan to another if the metallic
region changes orientation.

The extension of the SIFT approach [5] to three dimensional data has
been attempted by several researchers: we follow the approach of Allaire
et al. [1] in our 3D SIFT extension with additional parametric differences.
Furthermore we extend this work [1] to the explicit recognition of objects
based on RANSAC driven keypoint match selection, pose estimation and
final volumetric object verification.

The formulation of the 3D SIFT descriptor takes the form of a Ng×
Ng×Ng grid of gradient histograms, with each histogram being computed
from a Nv×Nv×Nv voxel grouping as shown in Figure 3a. Each gradient
histogram is derived by splitting both azimuth and elevation into 45º bins.
Consequently, each descriptor, normalized to unity, contains N3
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elements. The final visualization of such a descriptor is shown in Figure
3b as a 3D grid of gradient histograms.

A separate scan of the item of interest being considered was taken
from which the item is then cropped to provide a reference volume. This
reference volume is then subjected to the 3D SIFT generation process cre-
ating a reference descriptor set. Each example baggage item will produce
a corresponding set of candidate descriptors. The reference descriptors
are compared to the candidate descriptors by recording the Euclidean de-
scriptor distance between them [5]. A hard decision is made on these
distance values using a fixed threshold, τm, to produce an array of possi-
ble 3D SIFT matches. Given the large number of possible false matches
in this formulation we make use of RANSAC [4] to find an optimal match
between the reference item descriptors and a subset of the candidate de-
scriptors. This RANSAC formulation is used to select a set of three possi-
ble matches from which a 3D transformation is derived using a common

Figure 2: An example of metal artefacts in CT baggage imagery

Figure 3: 3D SIFT Descriptor Formulation

Table 1: Confusion Matrix of {clear bag, revolver, pistol frame}

place singular value decomposition [2]. All locations within the reference
object with density above a threshold τd (τd = 0.15) are compared using
L1 distance on a voxel by voxel basis. This is recorded as the verification
match metric and is used to identify the best candidate match within a
complex volume for a given reference item.

We concentrate on the location of two items of interest: revolver
(0.357 Magnum); pistol frame (Glock 9mm). A combined set of data
(21 bags containing revolver; 27 bags containing pistol frame; 25 bags
clear) were processed to identify any cross related errors of individual
item identification. The results of this are represented as a confusion ma-
trix in Table 1 where we can see a clear diagonal correlation between the
identification of clear bags and of the two targets (revolver/pistol frame)
but we can additionally see a difficulty in the generalized identification
of the pistol frame. This is shown as a precursor to future work in more
generalized object recognition within complex CT baggage imagery.

Our results have shown that the use of 3D SIFT to recognize known
objects in complex CT volumes that contain significant metal artefacts
and relatively poor resolution is possible with a relative degree of suc-
cess. The detection of a revolver in complex baggage items shows a high
true positive rate (90.5%) and a low false positive rate which is a require-
ment for an airport baggage screening scenario. However, the relatively
poor resolution coupled with its anisotropic nature leads to issues in the
identification of smaller items and generalized item sub parts. This is an
area for future work.
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